```
OMPE*
    Eaton,Dan L.
    Filvaroff,Ellen
    Gerritsen,Mary E.
    Goddard, Audrey
    Godowski,Paul J.
    Grimaldi,Christopher J.
    Gurney,Austin L.
    Watanabe,Colin K.
    Wood,William I.
<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC
    ACIDS ENCODING THE SAME
```

<130> P3230R1C1
<150> 60/063435
$<151>$ 1997-10-29
<150> 60/064215
<151> 1997-10-29
<150> 60/082797
<151> 1998-04-22
<150> 60/083495
<151> 1998-04-29
<150> 60/085579
<151> 1998-05-15
<150> 60/087759
<151> 1998-06-02
<150> 60/088021
<151> 1998-06-04
<150> 60/088029
<151> 1998-06-04
<150> 60/088030
<151> 1998-06-04
<150> 60/088734
<151> 1998-06-10
<150> 60/088740
<151> 1998-06-10
<150> 60/088811
<151> 1998-06-10
<150> 60/088824
<151> 1998-06-10
<150> 60/088825

```
<151> 1998-06-10
<150> 60/088863
<151> 1998-06-11
<150> 60/089105
<151> 1998-06-12
<150> 60/089514
<151> 1998-06-16
<150> 60/089653
<151> 1998-06-17
<150> 60/089952
<151> 1998-06-19
<150> 60/090246
<151> 1998-06-22
<150> 60/090444
<151> 1998-06-24
<150> 60/090688
<151> 1998-06-25
<150> 60/090696
<151> 1998-06-25
<150> 60/090862
<151> 1998-06-26
<150> 60/091628
<151> 1998-07-02
<150> 60/096012
<151> 1998-08-10
<150> 60/096757
<151> 1998-08-17
<150> 60/096949
<151> 1998-08-18
<150> 60/096959
<151> 1998-08-18
<150> 60/097954
<151> 1998-08-26
<150> 60/097971
<151> 1998-08-26
<150> 60/097979
<151> 1998-08-26
<150> 60/098749
```

```
<151> 1998-09-01
<150> 60/099741
<151> 1998-09-10
<150> 60/099763
<151> 1998-09-10
<150> 60/099792
<151> 1998-09-10
<150> 60/099812
<151> 1998-09-10
<150> 60/099815
<151> 1998-09-10
<150> 60/100627
<151> 1998-09-16
<150> 60/100662
<151> 1998-09-16
<150> 60/100683
<151> 1998-09-17
<150> 60/100684
<151> 1998-09-17
<150> 60/100930
<151> 1998-09-17
<150> 60/101279
<151> 1998-09-22
<150> 60/101475
<151> 1998-09-23
<150> 60/101738
<151> 1998-09-24
<150> 60/101743
<151> 1998-09-24
<150> 60/101916
<151> 1998-09-24
<150> 60/102570
<151> 1998-09-30
<150> 60/103449
<151> 1998-10-06
<150> 60/103678
<151> 1998-10-08
<150> 60/103679
```

```
<151> 1998-10-08
<150> 60/103711
<151> 1998-10-08
<150> 60/105000
<151> 1998-10-20
<150> 60/105002
<151> 1998-10-20
<150> 60/105881
<151> 1998-10-27
<150> 60/106030
<151> 1998-10-28
<150> 60/106464
<151> 1998-10-30
<150> 60/106856
<151> 1998-11-03
<150> 60/108807
<151> 1998-11-17
<150> 60/112419
<151> 1998-12-15
<150> 60/112422
<151> 1998-12-15
<150> 60/112853
<151> 1998-12-16
<150> 60/113011
<151> 1998-12-16
<150> 60/112854
<151> 1998-12-16
<150> 60/113300
<151> 1998-12-22
<150> 60/113408
<151> 1998-12-22
<150> 60/113430
<151> 1998-12-23
<150> 60/113621
<151> 1998-12-23
<150> 60/114223
<151> 1998-12-30
<150> 60/115614
```

```
<151> 1999-01-12
<150> 60/116527
<151> 1999-01-20
<150> 60/116843
<151> 1999-01-22
<150> 60/119285
<151> 1999-02-09
<150> 60/119287
<151> 1999-02-09
<150> 60/119525
<151> 1999-02-10
<150> 60/119549
<151> 1999-02-10
<150> 60/120014
<151> 1999-02-11
<150> 60/129122
<151> 1999-04-13
<150> 60/129674
<151> 1999-04-16
<150> 60/131291
<151> 1999-04-27
<150> 60/138387
<151> 1999-06-09
<150> 60/144791
<151> 1999-07-20
<150> 60/169495
<151> 1999-12-07
<150> 60/175481
<151> 2000-01-11
<150> 60/191007
<151> 2000-03-21
<150> 60/199397
<151> 2000-04-25
<150> 09/380139
<151> 1998-08-25
<150> 09/311832
<151> 1999-05-14
<150> 09/380137
```

```
<151> 1999-08-25
<150> 09/380138
<151> 1999-08-25
<150> 09/380142
<151> 1999-08-25
<150> 09/397342
<151> 1999-09-15
<150> 09/403297
<151> 1999-10-18
<150> 09/423844
<151> 1999-11-12
<150> 09/644848
<151> 2000-08-22
<150> 09/665350
<151> 2000-09-18
<150> 09/664610
<151> 2000-09-18
<150> 09/709238
<151> 2000-11-08
<150> 09/747259
<151> 2000-12-20
<150> 09/816744
<151> 2001-03-22
<150> 09/854208
<151> 2001-05-10
<150> 09/854280
<151> 2001-05-10
<150> 09/870574
<151> 2001-05-30
<150> 09/874503
<151> 2001-06-05
<150> 09/869599
<151> 2001-06-29
<150> 09/908,827
<151> 2001-07-18
<150> PCT/US98/19330
<151> 1998-09-16
<150> PCT/US99/05028
```

```
<151> 1999-03-08
<150> PCT/US99/10733
<151> 1999-05-14
<150> PCT/US99/12252
<151> 1999-06-02
<150> PCT/US99/20111
<151> 1999-09-01
<150> PCT/US99/21090
<151> 1999-09-15
<150> PCT/US99/21194
<151> 1999-09-15
<150> PCT/US99/30720
<151> 1999-12-22
<150> PCT/US00/04341
<151> 2000-02-18
<150> PCT/US00/04342
<151> 2000-02-18
<150> PCT/USOO/04414
<151> 2000-02-22
<150> PCT/US00/05601
<151> 2000-03-01
<150> PCT/US00/08439
<151> 2000-03-30
<150> PCT/US00/14042
<151> 2000-05-22
<150> PCT/US00/15264
<151> 2000-06-02
<150> PCT/US00/23522
<151> 2000-08-23
<150> PCT/US00/23328
<151> 2000-08-24
<150> PCT/US00/30873
<151> 2000-11-10
<150> PCT/US00/32378
<151> 2000-12-01
<150> PCT/US00/34956
<151> 2000-12-20
<150> PCT/US01/06520
```

```
<151> 2001-02-28
<150> PCT/USO1/06666
<151> 2001-03-01
<150> PCT/US01/17443
<151> 2001-05-30
<150> PCT/USO1/17800
<151> 2001-06-01
<150> PCT/US01/19692
<151> 2001-06-20
<150> PCT/US01/21066
<151> 2001-06-29
<150> PCT/US01/21735
<151> 2001-07-09
<160> 170
<210> 1
<211> 1173
<212> DNA
<213> Homo Sapien
<400> 1
    ggggcttcgg cgccagcggc cagcgctagt cggtctggta aggatttaca 50
    aaaggtgcag gtatgagcag gtctgaagac taacattttg tgaagttgta 100
    aaacagaaaa cctgttagaa atgtggtggt ttcagcaagg cctcagtttc 150
    cttccttcag cccttgtaat ttggacatct gctgctttca tattttcata 200
    cattactgca gtaacactcc accatataga cccggcttta ccttatatca 250
    gtgacactgg tacagtagct ccagaaaaat gcttatttgg ggcaatgcta 300
    aatattgcgg cagttttatg cattgctacc atttatgttc gttataagca 350
    agttcatgct ctgagtcctg aagagaacgt tatcatcaaa ttaaacaagg 400
    ctggccttgt acttggaata ctgagttgtt taggactttc tattgtggca 450
    aacttccaga aaacaaccct ttttgctgca catgtaagtg gagctgtgct 500
    tacctttggt atgggctcat tatatatgtt tgttcagacc atcctttcct 550
    accaaatgca gcccaaaatc catggcaaac aagtcttctg gatcagactg 600
    ttgttggtta tctggtgtgg agtaagtgca cttagcatgc tgacttgctc 650
    atcagttttg cacagtggca attttgggac tgatttagaa cagaaactcc }70
    attggaaccc cgaggacaaa ggttatgtgc ttcacatgat cactactgca 750
```

```
    gcagaatggt ctatgtcatt ttccttcttt ggttttttcc tgacttacat 800
    tcgtgatttt cagaaaattt ctttacgggt ggaagccaat ttacatggat 850
    taaccctcta tgacactgca ccttgcccta ttaacaatga acgaacacgg 900
    ctactttcca gagatatttg atgaaaggat aaaatatttc tgtaatgatt 950
    atgattctca gggattgggg aaaggttcac agaagttgct tattcttctc 1000
    tgaaattttc aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050
    gataatcagg aaacatgaaa gaagccattt gatagattat tctaaaggat 1100
    atcatcaaga agactattaa aaacacctat gcctatactt ttttatctca 1150
    gaaaataaag tcaaaagact atg 1173
<210> 2
<211> 266
<212> PRT
<213> Homo Sapien
<400> 2
    Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu
        1 5 10 15
    Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala
            20 25
                                30
Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp
                    35 40 45
    Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu
    Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr
                    65 70 75
    Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys
        80 85 90
    Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly
            95 100 105
    Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala
            1 1 0 1 1 5
                            120
    His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr
        125 130 135
    Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile
            140 145 150
    His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Leu Val Ile Trp
        155 160 165
```



```
taagcaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800
ggggaagtgc ataacaaacc atcaggtttc tggggaatga taaaaagtgt 850
taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900
tggatgcttt ggaagaatta agcaggcagc tttttctgga aacagctgat 950
ctatatgcta ccaaggagag aatagaatac tccaaaacct tcaaggggaa 1000
atattttaat tttcttggtt actttttctc tatttactgt gtttggaaaa 1050
ttttcatggc taccatcaat attgtttttg atcgagttgg gaaaacggat 1100
cctgtcacaa gaggcattga gatcactgtg aattatctgg gaatccaatt 1150
tgatgtgaag ttttggtccc aacacatttc cttcattctt gttggaataa 1200
tcatcgtcac atccatcaga ggattgctga tcactcttac caagttcttt 1250
tatgccatct ctagcagtaa gtcctccaat gtcattgtcc tgctattagc 1300
acagataatg ggcatgtact ttgtctcctc tgtgctgctg atccgaatga 1350
gtatgccttt agaataccgc accataatca ctgaagtcct tggagaactg 1400
cagttcaact tctatcaccg ttggtttgat gtgatcttcc tggtcagcgc 1450
tctctctagc atactcttcc tctatttggc tcacaaacag gcaccagaga 1500
agcaaatggc accttgaact taagcctact acagactgtt agaggccagt 1550
ggtttcaaaa tttagatata agagggggga aaaatggaac cagggcctga 1600
cattttataa acaaacaaaa tgctatggta gcatttttca ccttcatagc 1650
atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700
aacatgagag ggagaactaa ctcaagacaa tactcagcag agagcatccc 1750
gtgtggatat gaggctggtg tagaggcgga gaggagccaa gaaactaaag 1800
gtgaaaaata cactggaact ctggggcaag acatgtctat ggtagctgag 1850
ccaaacacgt aggatttccg ttttaaggtt cacatggaaa aggttatagc 1900
tttgccttga gattgactca ttaaaatcag agactgtaac aaaaaaaaaa 1950
aaaaaaaaa agggcggccg cgactctaga gtcgacctgc agaagcttgg 2000
ccgccatggc ccaacttgtt tattgcagct tataatg 2037
<210> 4
<211> 455
<212> PRT
<213> Homo Sapien
```

```
<400> 4
    Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile
        1 5 10 15
    Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe
        20 25 30
    Lys Asp Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser
    Val Thr Phe Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe
        50 55 60
    Glu Ile Leu Gly Val Leu Asn Ser Ser Ser Arg Tyr Phe His Trp
    Lys Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val
        80 85 90
    Pro Phe Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu
        95 100 105
    His Lys Gln Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe
        110 115 120
    Met Tyr Phe Phe Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser
        125 130 135
    Pro Lys His Gly Ile Leu Ser Ile Glu Gln Leu Ile Ser Arg Val
    Gly Val Ile Gly Val Thr Leu Met Ala Leu Leu Ser Gly Phe Gly
    1 5 5 ~ 1 6 0 ~ 1 6 5
Ala Val Asn Cys Pro Tyr Thr Tyr Met Ser Tyr Phe Leu Arg Asn
    170 175 180
Val Thr Asp Thr Asp Ile Leu Ala Leu Glu Arg Arg Leu Leu Gln
    185 190 195
Thr Met Asp Met Ile Ile Ser Lys Lys Lys Arg Met Ala Met Ala
Arg Arg Thr Met Phe Gln Lys Gly Glu Val His Asn Lys Pro Ser
    215 220 225
Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr Ser Ala Ser Gly
Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp Ala Leu Glu
    245 250 255
Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu Tyr Ala
    260 265 270
Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys Tyr
    275 280 285
```



```
    cactgtttag aacacacaca cttacttttt ctggtctcta ccactgctga 1850
    tattttctct aggaaatata cttttacaag taacaaaaat aaaaactctt 1900
    ataaatttct atttttatct gagttacaga aatgattact aaggaagatt 1950
    actcagtaat ttgtttaaaa agtaataaaa ttcaacaaac atttgctgaa 2000
    tagctactat atgtcaagtg ctgtgcaagg tattacactc tgtaattgaa 2050
    tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100
    ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta 2150
    tttttgctga gactaatctt attcattttc tctaatatgg caaccattat 2200
    aaccttaatt tattattaac atacctaaga agtacattgt tacctctata 2250
    taccaaagca cattttaaaa gtgccattaa caaatgtatc actagccctc 2300
    ctttttccaa caagaaggga ctgagagatg cagaaatatt tgtgacaaaa 2350
    aattaaagca tttagaaaac tt }237
<210> 6
<211> 322
<212> PRT
<213> Homo Sapien
<400> 6
    Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp
        1 5 10
    Thr Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu
                            20 25 30
Ser Ile Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser
                    35 40 45
Lys Lys Ala Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala
Cys Arg Leu Leu Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu
                                    65 70 75
Thr Ala Leu Lys Ala Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val
                                    80 85 90
Gly Asp Gly Phe Val Val Ile Ser Arg Ile Ser Pro Asn Pro Lys
                                    95 100 105
Cys Gly Lys Asn Gly Val Gly Val Leu Ile Trp Lys Val Pro Val
    110 115 120
Ser Arg Gln Phe Ala Ala Tyr Cys Tyr Asn Ser Ser Asp Thr Trp
125 130 135
```



```
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc 350
agcgcggtgg aagagatgga ggcagaagaa gctgctgcta aagcatcatc 400
agaagtgaac ctggcaaact tacctcccag ctatcacaat gagaccaaca 450
cagacacgaa ggttggaaat aataccatcc atgtgcaccg agaaattcac 500
aagataacca acaaccagac tggacaaatg gtcttttcag agacagttat 550
cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac 650
acctgccagc catgccgggg ccagaggatg ctctgcaccc gggacagtga 700
gtgctgtgga gaccagctgt gtgtctgggg tcactgcacc aaaatggcca 750
ccaggggcag caatgggacc atctgtgaca accagaggga ctgccagccg }80
gggctgtgct gtgccttcca gagaggcctg ctgttccctg tgtgcacacc 850
cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct 950
tgtgccagtg gcctcctctg ccagccccac agccacagcc tggtgtatgt 1000
gtgcaagccg accttcgtgg ggagccgtga ccaagatggg gagatcctgc 1050
tgcccagaga ggtccccgat gagtatgaag ttggcagctt catggaggag 1100
gtgcgccagg agctggagga cctggagagg agcctgactg aagagatggc 1150
gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt 1250
tatttcccca ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta 1300
catcttcttc ccagtaagtt tcccctctgg cttgacagca tgaggtgttg 1350
tgcatttgtt cagctccccc aggctgttct ccaggcttca cagtctggtg 1400
cttgggagag tcaggcaggg ttaaactgca ggagcagttt gccacccctg 1450
tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg 1550
agtctccctc tgattggt.tt tggggaaatg tggagaagag tgccotgctt 1600
tgcaaacatc aacctggcaa aaatgcaaca aatgaatttt ccacgcagtt 1650
ctttccatgg gcataggtaa gctgtgcctt cagctgttgc agatgaaatg 1700
ttctgttcac cctgcattac atgtgtttat tcatccagca gtgttgctca 1750
```

```
    gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
    tctctcagca cagcctgggg agggggtcat tgttctcctc gtccatcagg 1850
    gatctcagag gctcagagac tgcaagctgc ttgcccaagt cacacagcta 1900
    gtgaagacca gagcagtttc atctggttgt gactctaagc tcagtgctct 1950
    ctccactacc ccacaccagc cttggtgcca ccaaaagtgc tccccaaaag 2000
    gaaggagaat gggatttttc ttgaggcatg cacatctgga attaaggtca 2050
    aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
    gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga 2150
    cactgtccct ctttggcagt tgcattagta actttgaaag gtatatgact 2200
    gagcgtagca tacaggttaa cotgcagaaa cagtacttag gtaattgtag 2250
    ggcgaggatt ataaatgaaa tttgcaaaat cacttagcag caactgaaga 2300
    caattatcaa ccacgtggag aaaatcaaac cgagcagggc tgtgtgaaac 2350
    atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
    tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt 2450
    tcttaaagtt taaagttgca catgattgta taagcatgct ttctttgagt 2500
    tttaaattat gtataaacat aagttgcatt tagaaatcaa gcataaatca 2550
    cttcaactgc aaaaaaaaaa aaaaaaaaaa aaaaaa 2586
<210> 8
<211> 350
<212> PRT
<213> Homo Sapien
<400> 8
    Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala
        1 5 10
    Ala Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala
                            20 25 30
    Pro Val Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala
                            35 40 45
    Thr Leu Asn Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp
    Thr Gln His Lys Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu
        65 70 75
    Glu Ala Ala Ala Lys Ala Ser Ser Glu Val Asn Leu Ala Asn Leu
```



```
<211> 1395
<212> DNA
<213> Homo Sapien
<400> 9
cggacgcgtg ggcggacgcg tgggggctgt gagaaagtgc caataaatac 50
atcatgcaac cccacggccc accttgtgaa ctcctcgtgc ccagggctga 100
tgtgcgtctt ccagggctac tcatccaaag gcctaatcca acgttctgtc 150
ttcaatctgc aaatctatgg ggtcctgggg ctcttctgga cccttaactg 200
ggtactggcc ctgggccaat gcgtcctcgc tggagccttt gcctccttct 250
actgggcctt ccacaagccc caggacatcc ctaccttccc cttaatctct 300
gccttcatcc gcacactccg ttaccacact gggtcattgg catttggagc 350
cctcatcctg acccttgtgc agatagcccg ggtcatcttg gagtatattg 400
accacaagct cagaggagtg cagaaccctg tagcccgctg catcatgtgc 450
tgtttcaagt gctgcctctg gtgtctggaa aaatttatca agttcctaaa 500
ccgcaatgca tacatcatga tcgccatcta cgggaagaat ttctgtgtct 550
cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggtc 600
gtcctggaca aagtcacaga cotgctgctg ttctttggga agctgctggt 650
ggtcggaggc gtgggggtcc tgtccttctt ttttttctcc ggtcgcatcc 700
cggggctggg taaagacttt aagagccccc acctcaacta ttactggctg 750
cccatcatga cctccatcct gggggcctat gtcatcgcca gcggcttctt 800
cagcgttttc ggcatgtgtg tggacacgct cttcctctgc ttcctggaag }85
acctggagcg gaacaacggc tccctggacc ggccctacta catgtccaag 900
agccttctaa agattctggg caagaagaac gaggcgcccc cggacaacaa 950
gaagaggaag aagtgacagc tccggccctg atccaggact gcaccccacc 1000
cccaccgtcc agccatccaa cctcacttcg ccttacaggt ctccattttg 1050
tggtaaaaaa aggttttagg ccaggcgccg tggctcacgc ctgtaatcca 1100
acactttgag aggctgaggc gggcggatca cctgagtcag gagttcgaga 1150
ccagcctggc caacatggtg aaacctccgt ctctattaaa aatacaaaaa 1200
ttagccgaga gtggtggcat gcacctgtca tcccagctac tcgggaggct 1250
gaggcaggag aatcgcttga acccgggagg cagaggttgc agtgagccga 1300
```

```
    gatcgcgcca ctgcactcca acctgggtga cagactctgt ctccaaaaca 1350
    aaacaaacaa acaaaaagat tttattaaag atattttgtt aactc 1395
<210> 10
<211> 321
<212> PRT
<213> Homo Sapien
<400> 10
    Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile
    Asn Thr Ser Cys Asn Pro Thr Ala His Leu Val Asn Ser Ser Cys
                            20 25 30
    Pro Gly Leu Met Cys Val Phe Gln Gly Tyr Ser Ser Lys Gly Leu
                            35 40 45
    Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu Gly
    50 55 60
    Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly Gln Cys Val
                            65 70 75
    Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro
                        80 85 90
    Gln Asp Ile Pro Thr Phe Pro Leu Ile Ser Ala Phe Ile Arg Thr
    Leu Arg Tyr His Thr Gly Ser Leu Ala Phe Gly Ala Leu Ile Leu
        110 115 120
    Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His
        125 130 135
    Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
        140 145 150
    Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
        155 160 165
    Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
        1 7 0
                            175
                            180
    Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
        185 190 195
    Ile Val Arg Val Val Val Leu Asp Lys Val Thr Asp Leu Leu Leu
    200 205 210
    Phe Phe Gly Lys Leu Leu Val Val Gly Gly Val Gly Val Leu Ser
        215 220 225
    Phe Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
        230 235 240
```

```
        Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
        Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
        260 265 270
        Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
        275 280
        285
        Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
        290 295 300
        Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
        305 310
        315
        Asn Lys Lys Arg Lys Lys
            320
<210> 11
<211> 1901
<212> DNA
<213> Homo Sapien
<400> 11
    gccccgcgcc cggcgccggg cgcccgaagc cgggagccac cgccatgggg 50
    gcctgcetgg gagcctgctc cctgctcagc tgcgcgtcct gcctctgcgg 100
    ctctgccccc tgcatcctgt gcagctgctg ccccgccagc cgcaactcca 150
    ccgtgagccg cctcatcttc acgttcttcc tcttcctggg ggtgctggtg 200
    tccatcatta tgctgagccc gggcgtggag agtcagctct acaagctgcc 250
    ctgggtgtgt gaggaggggg cogggatccc caccgtcctg cagggccaca 300
    tcgactgtgg ctccctgctt ggctaccgcg ctgtctaccg catgtgcttc }35
    gccacggcgg ccttcttctt cttctttttc accctgctca tgctctgcgt 400
    gagcagcagc cgggaccccc gggctgccat ccagaatggg ttttggttct 450
    ttaagttcct gatcctggtg ggcctcaccg tgggtgcctt ctacatccct 500
    gacggctcct tcaccaacat ctggttctac ttcggcgtcg tgggctcott 550
    cctcttcatc ctcatccagc tggtgctgct catcgacttt gcgcactcct 600
    ggaaccagcg gtggctgggc aaggccgagg agtgcgattc ccgtgcctgg 650
    tacgcaggcc tcttcttctt cactctcctc ttctacttgc tgtcgatcgc 700
    ggccgtggcg ctgatgttca tgtactacac tgagcccagc ggctgccacg 750
    agggcaaggt cttcatcagc ctcaacctca ccttctgtgt ctgcgtgtcc }80
    atcgctgctg tcctgcccaa ggtccaggac gcccagccca actcgggtct }85
```

```
gctgcaggcc tcggtcatca ccctctacac catgtttgtc acctggtcag 900
ccctatccag tatccctgaa cagaaatgca acccccattt gccaacccag 950
ctgggcaacg agacagttgt ggcaggcccc gagggctatg agacccagtg 1000
gtgggatgcc ccgagcattg tgggcctcat catcttcctc ctgtgcaccc 1050
tcttcatcag tctgcgctcc tcagaccacc ggcaggtgaa cagcctgatg 1100
cagaccgagg agtgcccacc tatgctagac gccacacagc agcagcagca 1150
gcaggtggca gcctgtgagg gccgggcctt tgacaacgag caggacggcg 1200
tcacctacag ctactccttc ttccacttct gcctggtgct ggcctcactg 1250
cacgtcatga tgacgctcac caactggtac aagcccggtg agacccggaa 1300
gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350
cagggctgct cctctacctg tggaccctgg tagccccact cctcctgcgc 1400
aaccgcgact tcagctgagg cagcctcaca gcctgccatc tggtgcctcc 1450
tgccacctgg tgcctctcgg ctcggtgaca gccaacctgc cccctcccca 1500
caccaatcag ccaggctgag cccccacccc tgccccagct ccaggacctg 1550
cccctgagcc gggccttcta gtcgtagtgc cttcagggtc cgaggagcat 1600
caggctcctg cagagcccca tccccccgcc acacccacac ggtggagctg 1650
cctcttcctt cccctcctcc ctgttgccca tactcagcat ctcggatgaa 1700
agggctccct tgtcctcagg ctccacggga gcggggctgc tggagagagc 1750
ggggaactcc caccacagtg gggcatccgg cactgaagcc ctggtgttcc 1800
tggtcacgtc ccccagggga ccctgccccc ttcctggact tcgtgcctta 1850
ctgagtctct aagacttttt ctaataaaca agccagtgcg tgtaaaaaaa 1900
a 1901
<210> 12
<211> 457
<212> PRT
<213> Homo Sapien
<400> 12
    Met Gly Ala Cys Leu Gly Ala Cys Ser Leu Leu Ser Cys Ala Ser
        1 5 10
    Cys Leu Cys Gly'Ser Ala Pro Cys Ile Leu Cys Ser Cys Cys Pro
                            20
                            25
                            30
```

Ala Ser Arg Asn Ser Thr Val Ser Arg Leu Ile Phe Thr Phe Phe

Leu Phe Leu Gly Val Leu Val Ser Ile Ile Met Leu Ser Pro Gly
50
50

Val Glu Ser Gln Leu Tyr Lys Leu Pro Trp Val Cys Glu Glu Gly $65 \quad 7075$

Ala Gly Ile Pro Thr Val Leu Gln Gly His
80

Leu Leu Gly Tyr Arg Ala Val Tyr Arg Met Cys Phe Ala Thr Ala 95100105

Ala Phe Phe Phe Phe Phe Phe Thr Leu Leu Met Leu Cys Val Ser 110115120

Ser Ser Arg Asp Pro Arg Ala Ala Ile Gin Asn Gly Phe Trp Phe 125130135

Phe Lys Phe Leu Ile Leu Val Gly Leu Thr Val Gly Ala Phe Tyr 140145150

Ile Pro Asp Gly Ser Phe Thr Asn Ile Trp Phe Tyr Phe Gly Val 155160165

Val Gly Ser Phe Leu Phe Ile Leu Ile Gln Leu Val Leu Leu Ile 170175180

Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu 185190195

Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Phe Thr 200205210

Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe 215220225

Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe 230235240

Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala 245 250

255
Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu 260265270

Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser 275280 285

Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro 290295300

Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr 305310315

Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile

Leu Arg Asn Arg Asp Phe Ser 455

```
<210> 13
<211> 1572
<212> DNA
<213> Homo Sapien
<400> 13
    cgggccagcc tggggcggcc ggccaggaac cacccgttaa ggtgtcttct 50
    ctttagggat ggtgaggttg gaaaaagact cctgtaaccc tcctccagga 100
    tgaaccacct gccagaagac atggagaacg ctctcaccgg gagccagagc 150
    tcccatgctt ctctgcgcaa tatccattcc atcaacccca cacaactcat 200
    ggccaggatt gagtcctatg aaggaaggga aaagaaaggc atatctgatg 250
    tcaggaggac tttctgtttg tttgtcacct ttgacctctt attcgtaaca 300
    ttactgtgga taatagagtt aaatgtgaat ggaggcattg agaacacatt 350
    agagaaggag gtgatgcagt atgactacta ttcttcatat tttgatatat 400
    ttcttctggc agtttttcga tttaaagtgt taatacttgc atatgctgtg 450
    tgcagactgc gccattggtg ggcaatagcg ttgacaacgg cagtgaccag 500
    tgccttttta ctagcaaaag tgatcctttc gaagcttttc tctcaagggg 550
```

```
cttttggcta tgtgctgccc atcatttcat tcatccttgc ctggattgag 600
acgtggttcc tggatttcaa agtgttacct caagaagcag aagaagaaaa 650
cagactcctg atagttcagg atgcttcaga gagggcagca cttatacctg 700
gtggtctttc tgatggtcag ttttattccc ctcctgaatc cgaagcagga 750
tctgaagaag ctgaagaaaa acaggacagt gagaaaccac ttttagaact 800
atgagtacta cttttgttaa atgtgaaaaa ccctcacaga aagtcatcga 850
ggcaaaaaga ggcaggcagt ggagtctccc tgtcgacagt aaagttgaaa 900
tggtgacgtc cactgctggc tttattgaac agctaataaa gatttattta 950
ttgtaatacc tcacaaacgt tgtaccatat ccatgcacat ttagttgcct 1000
gcctgtggct ggtaaggtaa tgtcatgatt catcctctct tcagtgagac 1050
tgagcctgat gtgttaacaa ataggtgaag aaagtcttgt gctgtattcc 1100
taatcaaaag acttaatata ttgaagtaac acttttttag taagcaagat 1150
acctttttat ttcaattcac agaatggaat ttttttgttt catgtctcag 1200
atttattttg tatttctttt ttaacactct acatttccct tgttttttaa 1250
ctcatgcaca tgtgctcttt gtacagtttt aaaaagtgta ataaaatctg 1300
acatgtcaat gtggctagtt ttatttttct tgttttgcat tatgtgtatg 1350
gcctgaagtg ttggacttgc aaaaggggaa gaaaggaatt gcgaatacat 1400
gtaaaatgtc accagacatt tgtattattt ttatcatgaa atcatgtttt 1450
tctctgattg ttctgaaatg ttctaaatac tcttattttg aatgcacaaa 1500
atgacttaaa ccattcatat catgtttcct ttgcgttcag ccaatttcaa 1550
ttaaaatgaa ctaaattaaa aa 1572
<210> 14
<211> 234
<212> PRT
<213> Homo Sapien
<400> 14
Met Asn His Leu Pro Glu Asp Met Glu Asn Ala Leu Thr Gly Ser
        1 5 10
    Gln Ser Ser His Ala Ser Leu Arg Asn Ile His Ser Ile Asn Pro
                        20 25 30
Thr Gln Leu Met Ala Arg Ile Glu Ser Tyr Glu Gly Arg Glu Lys
                                    35
                                    40
                                    45
Lys Gly Ile Ser Asp Val Arg Arg Thr Phe Cys Leu Phe Val Thr
```



```
    Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro
            620 625 630
    Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Gly Glu Ala Leu
        635 640 645
    Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly
            650 655 660
    Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile
            665 670
<210> 17
<211> 1672
<212> DNA
<213> Homo Sapien
<400> 17
    gcagcggcga ggcggcggtg gtggctgagt ccgtggtggc agaggcgaag 50
    gcgacagctc atgcgggtcc ggatagggct gacgctgctg ctgtgtgcgg 100
    tgctgctgag cttggcctcg gcgtcctcgg atgaagaagg cagccaggat 150
    gaatccttag attccaagac tactttgaca tcagatgagt cagtaaagga 200
ccatactact gcaggcagag tagttgctgg tcaaatattt cttgattcag 250
aagaatctga attagaatcc tctattcaag aagaggaaga cagcctcaag 300
agccaagagg gggaaagtgt cacagaagat atcagctttc tagagtctcc 350
aaatccagaa aacaaggact atgaagagcc aaagaaagta cggaaaccag 400
ctttgaccgc cattgaaggc acagcacatg gggagccctg ccacttccct 450
tttcttttcc tagataagga gtatgatgaa tgtacatcag atgggaggga 500
agatggcaga ctgtggtgtg ctacaaccta tgactacaaa gcagatgaaa 550
agtggggctt ttgtgaaact gaagaagagg ctgctaagag acggcagatg 600
caggaagcag aaatgatgta tcaaactgga atgaaaatcc ttaatggaag 650
caataagaaa agccaaaaaa gagaagcata tcggtatctc caaaaggcag 700
caagcatgaa ccataccaaa gccctggaga gagtgtcata tgctctttta }75
tttggtgatt acttgccaca gaatatccag gcagcgagag agatgtttga 800
gaagctgact gaggaaggct ctcccaaggg acagactgct cttggctttc 850
tgtatgcctc tggacttggt gttaattcaa gtcaggcaaa ggctcttgta 900
tattatacat ttggagctct tgggggcaat ctaatagccc acatggtttt 950
ggtaagtaga ctttagtgga aggctaataa tattaacatc agaagaattt 1000
```

```
    gtggtttata gcggccacaa ctttttcagc tttcatgatc cagatttgct 1050
    tgtattaaga ccaaatattc agttgaactt ccttcaaatt cttgttaatg 1100
    gatataacac atggaatcta catgtaaatg aaagttggtg gagtccacaa 1150
    tttttcttta aaatgattag tttggctgat tgcccctaaa aagagagatc 1200
    tgataaatgg ctctttttaa attttctctg agttggaatt gtcagaatca 1250
    ttttttacat tagattatca taattttaaa aatttttctt tagtttttca 1300
    aaattttgta aatggtggct atagaaaaac aacatgaaat attatacaat 1350
    attttgcaac aatgccctaa gaattgttaa aattcatgga gttatttgtg 1400
    cagaatgact ccagagagct ctactttctg ttttttactt ttcatgattg 1450
    gctgtcttcc catttattct ggtcatttat tgctagtgac actgtgcctg 1500
    cttccagtag tctcattttc cctattttgc taatttgtta ctttttcttt 1550
    gctaatttgg aagattaact catttttaat aaaattatgt ctaagattaa 1600
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
    aaaaaaaaaa aaaaaaaaaa aa 1672
<210> 18
<211> 301
<212> PRT
<213> Homo Sapien
<400> 18
    Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu
        1 5 10 15
    Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp
            20 25 30
    Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val
            35 40 45
    Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe
                            50 55 60
    Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu
        65 70 75
    Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp
        80 85 90
    Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu
        95 100 105
    Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly
    110 115
    120
```



```
caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350
cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400
gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450
gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500
agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550
tatgcttcct ttggtcaaga aagctcaagg gagagttatt aatgtctcca 600
gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650
tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700
tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750
cagatccagt aaaggtaatt gaaaaaaaac tcgccatttg ggagcagctg 800
tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct }85
agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900
tggtagagtg catggaccac gctctaacaa gtctcttccc taagactcat 950
tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000
gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050
ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100
tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150
tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200
agggagtccc accatcgctg gtggtatccc agggtccctg ctcaagtttt 1250
ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300
gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350
gcccattcaa aatgatcttt accgtggcct gccccatgct tatggtcccc 1400
agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450
taaaagataa gtcaacccaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaa 1508
<210> 20
<211> 319
<212> PRT
<213> Homo Sapien
<400> 20
Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
```

Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys 202530

Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys

Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu $65 \quad 7075$

Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val $80-8590$

Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
95
Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala 110115120

Pro Thr Asp Trp Leu Thr Leu Glu Asp Tyr Arg Glu Pro Ile Glu $\begin{array}{r}135 \\ 125\end{array}$

Val Asn Leu Phe Gly Leu Ile Ser Val Thr Leu Asn Met Leu Pro 140145150

Leu Val Lys Lys Ala Gln Gly Arg Val Ile Asn Val Ser Ser Val 155160165

Gly Gly Arg Leu Ala Ile Val Gly Gly Gly Tyr Thr Pro Ser Lys 170175180

Tyr Ala Val Glu Gly Phe Asn Asp Ser Leu Arg Arg Asp Met Lys 185190195

Ala Phe Gly Val His Val Ser Cys Ile Glu Pro Gly Leu Phe Lys 200205210

Thr Asn Leu Ala Asp Pro Val Lys Val Ile Glu Lys Lys Leu Ala 215220225

Ile Trp Glu Gln $\begin{array}{r}\text { Leu } \\ 230\end{array}$

Gly Tyr Ile Glu Lys Ser Leu Asp Lys Leu Lys Gly Asn Lys Ser 245250 255

Tyr Val Asn Met Asp Leu Ser Pro Val Val Glu Cys Met Asp His 260265270

Ala Leu Thr Ser Leu Phe Pro Lys Thr His Tyr Ala Ala Gly Lys 275280285

Asp Ala Lys Ile Phe Trp Ile Pro Leu Ser His Met Pro Ala Ala
Leu $G l n$ Asp Phe Leu Leu Leu Lys Gln Lys Ala Glu Leu Ala Asn
305
Pro Lys Ala Val

```
```

<210> 21

```
<210> 21
<211> 1849
<211> 1849
<212> DNA
<212> DNA
<213> Homo Sapien
<213> Homo Sapien
<400> 21
<400> 21
    ctgaggcggc ggtagcatgg agggggagag tacgtcggcg gtgctctcgg 50
    ctgaggcggc ggtagcatgg agggggagag tacgtcggcg gtgctctcgg 50
gctttgtgct cggcgcactc gctttccagc acctcaacac ggactcggac·100
gctttgtgct cggcgcactc gctttccagc acctcaacac ggactcggac·100
acggaaggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150
acggaaggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150
tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200
tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200
agaaatatat tccatgctat cagcttttta gcttttataa ttcttcaggc 250
agaaatatat tccatgctat cagcttttta gcttttataa ttcttcaggc 250
gaagtaaatg agcaagcact gaagaaaata ttatcaaatg tcaaaaagaa 300
gaagtaaatg agcaagcact gaagaaaata ttatcaaatg tcaaaaagaa 300
tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350
tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350
ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaccaa 400
ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaccaa 400
gaccttgttt ttctgctatt aacaccaagt ataataacag aaagctgctc 450
gaccttgttt ttctgctatt aacaccaagt ataataacag aaagctgctc 450
tactcatcga ctggaacatt ccttatataa acctcaaaaa ggactttttc 500
tactcatcga ctggaacatt ccttatataa acctcaaaaa ggactttttc 500
acagggtacc tttagtggtt gccaatctgg gcatgtctga acaactgggt 550
acagggtacc tttagtggtt gccaatctgg gcatgtctga acaactgggt 550
tataaaactg tatcaggttc ctgtatgtcc actggtttta gccgagcagt 600
tataaaactg tatcaggttc ctgtatgtcc actggtttta gccgagcagt 600
acaaacacac agctctaaat tttttgaaga agatggatcc ttaaaggagg 650
acaaacacac agctctaaat tttttgaaga agatggatcc ttaaaggagg 650
tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700
tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700
atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750
atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750
ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800
ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800
ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt }85
ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt }85
tttctttgtc aggcattacg gacctttttt ccaaattctg aatttcttca 900
tttctttgtc aggcattacg gacctttttt ccaaattctg aatttcttca 900
ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950
ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950
actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000
actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000
cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050
cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050
gcataaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100
```

gcataaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100

```
```

tgttagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150
caagataaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200
aaagatgaag ggttttggtg aatattcacg gtctcctaca ttttgatcct 1250
tttaacctta caaggagatt tttttatttg gctgatgggt aaagccaaac 1300
atttctattg tttttactat gttgagctac ttgcagtaag ttcatttgtt 1350
tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcat 1400
ttacttcaca aagtactttt tcaaacatca gatgctttta tttccaaacc 1450
tttttttcac ctttcactaa gttgttgagg ggaaggctta cacagacaca 1500
ttctttagaa ttggaaaagt gagaccaggc acagtggctc acacctgtaa 1550
tcccagcact tagggaagac aagtcaggag gattgattga agctaggagt 1600
tagagaccag cctgggcaac gtattgagac catgtctatt aaaaaataaa 1650
atggaaaagc aagaatagcc ttattttcaa aatatggaaa gaaatttata 1700
tgaaaattta tctgagtcat taaaattctc cttaagtgat acttttttag 1750
aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800
aaatttgcaa aacatcatct aaaatttaaa aaaaaaaaaa aaaaaaaaa 1849
<210> 22
<211> 409
<212> PRT
<213> Homo Sapien
<400> 22
Met Glu Gly Glu Ser Thr Ser Ala Val Leu Ser Gly Phe Val Leu
1 5 10 15
Gly Ala Leu Ala Phe Gln His Leu Asn Thr Asp Ser Asp Thr Glu
20 25 30
Gly Phe Leu Leu Gly Glu Val Lys Gly Glu Ala Lys Asn Ser Ile
Thr Asp Ser Gln Met Asp Asp Val Glu Val Val Tyr Thr Ile Asp
50 55 60
Ile Gln Lys Tyr Ile Pro Cys Tyr Gln Leu Phe Ser Phe Tyr Asn
6 5 ~ 7 0 ~ 7 5 ~
Ser Ser Gly Glu Val Asn Glu Gln Ala Leu Lys Lys Ile Leu Ser
80 85 90
Asn Val Lys Lys Asn Val Val Gly Trp Tyr Lys Phe Arg Arg His

```

```

 Asp Glu Glu Ile Glu Lys Met Lys Gly Phe Gly Glu Tyr Ser Arg
 395
 400
 4 0 5
 Ser Pro Thr Phe
<210> 23
<211> 2651
<212> DNA
<213> Homo Sapien
<400> 23
ggcacagccg cgcggcggag ggcagagtca gccgagccga gtccagccgg 50
acgagcggac cagcgcaggg cagcccaagc agcgcgcagc gaacgcccgc 100
cgccgcccac accctctgcg gtccecgcgg cgcctgccac cottccctcc 150
ttccccgcgt ccccgcctcg ccggccagtc agcttgccgg gttcgctgcc 200
ccgcgaaacc ccgaggtcac cagcccgcgc ctctgcttcc ctgggccgcg 250
cgccgcctcc acgccetcct tctcccctgg cocggcgcct ggcaccgggg 300
accgttgcct gacgcgaggc ccagctctac ttttcgcccc gcgtctcctc 350
cgcctgctcg cotcttccac caactccaac tccttctccc tccagctcca 400
ctcgctagtc cccgactccg ccagccctcg gcccgctgcc gtagcgccgc 450
ttcccgtccg gtcccaaagg tgggaacgcg tccgccccgg cccgcaccat 500
ggcacggttc ggcttgcccg cgcttctctg caccctggca gtgctcagcg 550
ccgcgctgct ggctgccgag ctcaagtcga aaagttgctc ggaagtgcga 600
cgtctttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650
gatcaacggt gatcatttga agatctgtcc ccagggttct acctgctgct 700
ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750
agtgtggtca gcgaacagtg caatcatttg caagctgtct ttgcttcacg 800
ttacaagaag tttgatgaat tcttcaaaga actacttgaa aatgcagaga 850
aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900
aattctgagc tatttaaaga tctcttcgta gagttgaaac gttactacgt 950
ggtgggaaat gtgaacctgg aagaaatgct aaatgacttc tgggctcgcc 1000
tcctggagcg gatgttccgc ctggtgaact cccagtacca ctttacagat 1050
gagtatctgg aatgtgtgag caagtatacg gagcagctga agcccttcgg 1100
agatgtccct cgcaaattga agctccaggt tactcgtgct tttgtagcag 1150

```
```

cccgtacttt cgctcaaggc ttagcggttg cgggagatgt cgtgagcaag 1200
gtctccgtgg taaaccccac agcccagtgt acccatgccc tgttgaagat 1250
gatctactgc tcccactgcc ggggtctcgt gactgtgaag ccatgttaca 1300
actactgctc aaacatcatg agaggctgtt tggccaacca aggggatctc 1350
gattttgaat ggaacaattt catagatgct atgctgatgg tggcagagag 1400
gctagagggt cctttcaaca ttgaatcggt catggatccc atcgatgtga 1450
agatttctga tgctattatg aacatgcagg ataatagtgt tcaagtgtct 1500
cagaaggttt tccagggatg tggacccccc aagcccctcc cagctggacg 1550
aatttctcgt tccatctctg aaagtgcctt cagtgctcgc ttcagaccac 1600
atcaccccga ggaacgccca accacagcag ctggcactag tttggaccga 1650
ctggttactg atgtcaagga gaaactgaaa caggccaaga aattctggtc 1700
ctcccttccg agcaacgttt gcaacgatga gaggatggct gcaggaaacg 1750
gcaatgagga tgactgttgg aatgggaaag gcaaaagcag gtacctgttt 1800
gcagtgacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850
ggttgacacc agcaaaccag acatactgat ccttcgtcaa atcatggctc 1900
ttcgagtgat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950
gacttctttg atatcagtga tgaaagtagt ggagaaggaa gtggaagtgg 2000
ctgtgagtat cagcagtgcc cttcagagtt tgactacaat gccactgacc 2050
atgctgggaa gagtgccaat gagaaagccg acagtgctgg tgtccgtcct 2100
ggggcacagg cctacctcct cactgtcttc tgcatcttgt tcctggttat 2150
gcagagagag tggagataat tctcaaactc tgagaaaaag tgttcatcaa 2200
aaagttaaaa ggcaccagtt atcacttttc taccatccta gtgactttgc 2250
tttttaaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300
tttaagaagt gctgactttg ttttctcatt cagttttggg aggaaaaggg 2350
actgtgcatt gagttggttc ctgctccccc aaaccatgtt aaacgtggct 2400
aacagtgtag gtacagaact atagttagtt gtgcatttgt gattttatca 2450
ctctattatt tgtttgtatg tttttttctc atttcgtttg tgggtttttt 2500
tttccaactg tgatctcgcc ttgtttctta caagcaaacc agggtccctt 2550
cttggcacgt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600

```
```

 agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gcccaaaaag 2650
 c 2651
 <210> 24
<211> 556
<212> PRT
<213> Homo Sapien
<400> 24
Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val
1 5 10
Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys
20 25 30
Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn
35 40 45
Asp Ala Pro Leu His Glu Ile Asn Gly Asp His Leu Lys Ile Cys
50 55 60
Pro Gln Gly Ser Thr Cys Cys Ser Gln Glu Met Glu Glu Lys Tyr
Ser Leu Gln Ser Lys Asp Asp Phe Lys Ser Val Val Ser Glu Gln
80 85 90
Cys Asn His Leu Gln Ala Val Phe Ala Ser Arg Tyr Lys Lys Phe
95 100 105
Asp Glu Phe Phe Lys Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu
110 115 120
Asn Asp Met Phe Val Lys Thr Tyr Gly His Leu Tyr Met Gln Asn
125 130 135
Ser Glu Leu Phe Lys Asp Leu Phe Val Glu Leu Lys Arg Tyr Tyr
140* 145 150
Val Val Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp
155 160 165
Ala Arg Leu Leu Glu Arg Met Phe Arg Leu Val Asn Ser Gln Tyr
170 175 180
His Phe Thr Asp Glu Tyr Leu Glu Cys Val Ser Lys Tyr Thr Glu
185 190 195
Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Leu Gln
Val Thr Arg Ala Phe Val Ala Ala Arg Thr Phe Ala Gln Gly Leu
215 220
225
Ala Val Ala Gly Asp Val Val Ser Lys Val Ser Val Val Asn Pro

```


Phe Asp Tyr Asn Ala Thr Asp His Ala Gly Lys Ser Ala Asn Glu
```

 515 520
 5 2 5
 Lys Ala Asp Ser Ala Gly Val Arg Pro Gly Ala Gln Ala Tyr Leu
 Leu Thr Val Phe Cys Ile Leu Phe Leu Val Met Gln Arg Glu Trp
545 550 555
Arg
<210> 25
<211> 870
<212> DNA
<213> Homo Sapien
<400> 25
ctcgccctca aatgggaacg ctggcctggg actaaagcat agaccaccag 50
gctgagtatc ctgacctgag tcatccccag ggatcaggag cctccagcag 100
ggaaccttcc attatattct tcaagcaact tacagctgca ccgacagttg 150
cgatgaaagt tctaatctct tccctcctcc tgttgctgcc actaatgctg 200
atgtccatgg tctctagcag cctgaatcca ggggtcgcca gaggccacag 250
ggaccgaggc caggcttcta ggagatggct ccaggaaggc ggccaagaat 300
gtgagtgcaa agattggttc ctgagagccc cgagaagaaa attcatgaca 350
gtgtctgggc tgccaaagaa gcagtgcccc tgtgatcatt tcaagggcaa 400
tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
ccagagcctg ccagcaattt ctcaaacaat gtcagctaag aagctttgct 500
ctgcctttgt aggagctctg agcgcccact cttccaatta aacattctca 550
gccaagaaga cagtgagcac acctaccaga cactcttctt ctcccacctc 600
actctcccac tgtacccacc cctaaatcat tccagtgctc tcaaaaagca 650
tgtttttcaa gatcattttg tttgttgctc tctctagtgt cttcttctct 700
cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac }75
ctgaaagatt ccaggaaact gtagcttcct agctagtgtc atttaacctt 800
aaatgcaatc aggaaagtag caaacagaag tcaataaata tttttaaatg 850
tcaaaaaaaa aaaaaaaaaa }87
<210> 26
<211> 119
<212> PRT
<213> Homo Sapien

```
```

<400> 26
Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Leu Pro Leu Met
1 5 10
Leu Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg
20 25 30
Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu
35 40 45
Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro
5 0 5 5 ~ 6 0
Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys
Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln
80 85 90
Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln
95 100 105
Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu
110 115
<210> 27
<211> 1371
<212> DNA
<213> Homo Sapien
<400> 27
ggacgccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50
ggaagcacag ctcagagctg gtctgccatg gacatcctgg tcccactcct 100
gcagctgctg gtgctgcttc ttaccctgcc cctgcacctc atggctctgc 150
tgggctgctg gcagcccctg tgcaaaagct acttccccta cctgatggcc 200
gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacgggagct 250
cttcagccag ataaaggggc ttacaggagc ctccgggaaa gtggccctac 300
tggagctggg ctgcggaacc ggagccaact ttcagttcta cccaccgggc 350
tgcagggtca cctgcctaga cccaaatccc cactttgaga agttcctgac 400
aaagagcatg gctgagaaca ggcacctcca atatgagcgg tttgtggtgg 450
ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500
gtctgcactc tggtgctgtg ctctgtgcag agcccaagga aggtcctgca 550
ggaggtccgg agagtactga gaccgggagg tgtgctcttt ttctgggagc 600
atgtggcaga accatatgga agctgggcct tcatgtggca gcaagttttc 650
gagcccacct ggaaacacat tggggatggc tgctgcctca ccagagagac 700

```
```

 ctggaaggat cttgagaacg cccagttctc cgaaatccaa atggaacgac 750
 agccccctcc cttgaagtgg ctacctgttg ggccccacat catgggaaag }80
 gctgtcaaac aatctttccc aagctccaag gcactcattt gctccttccc 850
 cagcctccaa ttagaacaag ccacccacca gcctatctat cttccactga 900
 gagggaccta gcagaatgag agaagacatt catgtaccac ctactagtcc 950
 ctctctcccc aacctctgcc agggcaatct ctaacttcaa tcccgccttc 1000
 gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050
 accctgttgt atcctcaact gcaagtttct ggactagtct cccaacgttt 1100
 gcctcccaat gttgtccctt tccttcgttc ccatggtaaa gctcctctcg 1150
 ctttcctcct gaggctacac ccatgcgtct ctaggaactg gtcacaaaag 1200
 tcatggtgcc tgcatccctg ccaagccccc ctgaccctct ctccccacta 1250
 ccaccttctt cctgagctgg gggcaccagg gagaatcaga gatgctggggg 1300
 atgccagagc aagactcaaa gaggcagagg ttttgttctc aaatattttt 1350
 taataaatag acgaaaccac g 1371
 <210> 28
<211> 277
<212> PRT
<213> Homo Sapien
<400> 28
Met Asp Ile Leu Val Pro Leu Leu Gln Leu Leu Val Leu Leu Leu
1 5 10
Thr Leu Pro Leu His Leu Met Ala Leu Leu Gly Cys Trp Gln Pro
20 25 30
Leu Cys Lys Ser Tyr Phe Pro Tyr Leu Met Ala Val Leu Thr Pro
35 40 45
Lys Ser Asn Arg Lys Met Glu Ser Lys Lys Arg Glu Leu Phe Ser
50 55
6 0
Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly Lys Val Ala Leu Leu
65 70 75
Glu Leu Gly Cys Gly Thr Gly Ala Asn Phe Gln Phe Tyr Pro Pro
80 85 90
Gly Cys Arg Val Thr Cys Leu Asp Pro Asn Pro His Phe Glu Lys
95 100 105
Phe Leu Thr Lys Ser Met Ala Glu Asn Arg His Leu Gln Tyr Glu

```

```

 cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450
 taaacagtta aaagctgaaa aaaaaaaaaa aaaaaaaaaa aaaa 494
 <210> 30
<211> 73
<212> PRT
<213> Homo Sapien
<400> 30
Met Leu Leu Leu Thr Leu Leu Leu Leu Leu Leu Leu Leu Lys Gly
1 5 10 15
Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser
Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Phe Pro Pro Ser
35 40 45
Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln
50 55 60
Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
65 70
<210> 31
<211> 1660
<212> DNA
<213> Homo Sapien
<400> 31
gtttgaattc cttcaactat acccacagtc caaaagcaga ctcactgtgt 50
cccaggctac cagttcctcc aagcaagtca tttcccttat ttaaccgatg 100
tgtccctcaa acacctgagt gctactccct atttgcatct gttttgataa 150
atgatgttga caccctccac cgaattctaa gtggaatcat gtcgggaaga 200
gatacaatcc ttggcctgtg tatcctcgca ttagccttgt ctttggccat 250
gatgtttacc ttcagattca tcaccaccct tctggttcac attttcattt 300
cattggttat tttgggattg ttgtttgtct gcggtgtttt atggtggctg 350
tattatgact ataccaacga cctcagcata gaattggaca cagaaaggga 400
aaatatgaag tgcgtgctgg ggtttgctat cgtatccaca ggcatcacgg 450
cagtgctgct cgtcttgatt tttgttctca gaaagagaat aaaattgaca 500
gttgagcttt tccaaatcac aaataaagcc atcagcagtg ctcccttcct 550
gctgttccag ccactgtgga catttgccat cctcattttc ttctgggtcc 600
tctgggtggc tgtgctgctg agcctgggaa ctgcaggagc tgcccaggtt 650
atggaaggcg gccaagtgga atataagccc ctttcgggca ttcggtacat }70

```
```

 gtggtcgtac catttaattg gcctcatctg gactagtgaa ttcatccttg 750
 cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800
 agaagtaaaa atgatcctcc tgatcatccc atcctttcgt ctctctccat 850
 tctcttcttc taccatcaag gaaccgttgt gaaagggtca tttttaatct 900
 ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg.950
 aaagaacagc agcatggtgc attgtccagg tacctgttcc gatgctgcta 1000
 ctgctgtttc tggtgtcttg acaaatacct gctccatctc aaccagaatg 1050
 catatactac aactgctatt aatgggacag atttctgtac atcagcaaaa 1100
 gatgcattca aaatcttgtc caagaactca agtcacttta catctattaa 1150
 ctgctttgga gacttcataa tttttctagg aaaggtgtta gtggtgtgtt 1200
 tcactgtttt tggaggactc atggctttta actacaatcg ggcattccag 1250
 gtgtgggcag tccctctgtt attggtagct ttttttgcct acttagtagc 1300
 ccatagtttt ttatctgtgt ttgaaactgt gctggatgca cttttcctgt 1350
 gttttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400
 tttatggatc aagaatttct gagtttcgta aaaaggagca acaaattaaa 1450
caatgcaagg gcacagcagg acaagcactc attaaggaat gaggagggaa 1500
cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550
ggaaaacatt tccttctaag agccatttac agaatagaag atgagaccac 1600
tagagaaaag ttagtgaatt tttttttaaa agacctaata aaccctattc 1650
ttcctcaaaa 1660
<210> 32
<211> 445
<212> PRT
<213> Homo Sapien
<400> 32
Met Ser Gly Arg Asp Thr Ile Leu Gly Leu Cys Ile Leu Ala Leu
1 5 10
Ala Leu Ser Leu Ala Met Met Phe Thr Phe Arg Phe Ile Thr Thr
20 25 30
Leu Leu Val His Ile Phe Ile Ser Leu Val Ile Leu Gly Leu Leu
35 40 45
Phe Val Cys Gly Val Leu Trp Trp Leu Tyr Tyr Asp Tyr Thr Asn
50 55


```
cttctgctgc ttctaccacc agcatcccca gaccacaatc agtgggccac 850
aggagccagg agatggatct ctggtccact gccacctaca caagcagcca 900
aaacaggccc agagctgatc caggtatcca aaggcaagat ccttcaggag 950
ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttgttcca 1000
aaagaagaat tgagcacaca gtctttggag ccagtatccc tgggagatcc 1050
aaactgcaaa attgacttgt cgtttttaat tgatgggagc accagcattg 1100
gcaaacggcg attccgaatc cagaagcagc tcctggctga tgttgcccaa 1150
gctcttgaca ttggccctgc cggtccactg atgggtgttg tccagtatgg 1200
agacaaccct gctactcact ttaacctcaa gacacacacg aattctcgag 1250
atctgaagac agccatagag aaaattactc agagaggagg actttctaat 1300
gtaggtcggg ccatctcctt tgtgaccaag aacttctttt ccaaagccaa 1350
tggaaacaga agcggggctc ccaatgtggt ggtggtgatg gtggatggct 1400
ggcccacgga caaagtggag gaggcttcaa gacttgcgag agagtcagga 1450
atcaacattt tcttcatcac cattgaaggt gctgctgaaa atgagaagca 1500
gtatgtggtg gagcccaact ttgcaaacaa ggccgtgtgc agaacaaacg 1550
gcttctactc gctccacgtg cagagctggt ttggcctcca caagaccctg 1600
cagcctctgg tgaagcgggt ctgcgacact gaccgcctgg cotgcagcaa 1650
gacctgcttg aactcggctg acattggctt cgtcatcgac ggctccagca 1700
gtgtggggac gggcaacttc cgcaccgtcc tccagtttgt gaccaacctc 1750
accaaagagt ttgagatttc cgacacggac acgcgcatcg gggccgtgca 1800
gtacacctac gaacagcggc tggagtttgg gttcgacaag tacagcagca 1850
agcctgacat cctcaacgcc atcaagaggg tgggctactg gagtggtggc 1900
accagcacgg gggctgccat caacttcgcc ctggagcagc tcttcaagaa 1950
gtccaagccc aacaagagga agttaatgat cctcatcacc gacgggaggt 2000
cctacgacga cgtccggatc ccagccatgg ctgcccatct gaagggagtg 2050
atcacctatg cgataggcgt tgcctgggct gcccaagagg agctagaagt 2100
cattgccact caccccgcca gagaccactc cttctttgtg gacgagtttg 2150
acaacctcca tcagtatgtc cccaggatca tccagaacat ttgtacagag 2200
```

```
    ttcaactcac agcctcggaa ctgaattcag agcaggcaga gcaccagcaa 2250
    gtgctgcttt actaactgac gtgttggacc accccaccgc ttaatggggc 2300
    acgcacggtg catcaagtct tgggcagggc atggagaaac aaatgtcttg 2350
    ttattattct ttgccatcat gctttttcat attccaaaac ttggagttac 2400
    aaagatgatc acaaacgtat agaatgagcc aaaaggctac atcatgttga 2450
    gggtgctgga gattttacat tttgacaatt gttttcaaaa taaatgttcg 2500
    gaatacagtg cagcccttac gacaggctta cgtagagctt ttgtgagatt 2550
    tttaagttgt tatttctgat ttgaactctg taaccctcag caagtttcat 2600
    ttttgtcatg acaatgtagg aattgctgaa ttaaatgttt agaaggatga 2650
    aaaataaaaa aaaaaaaaaa aaaaaaaaaa aamaaaaaaa aaaaaaaaaa 2700
    aaaaaaaaaa aaaaaaaaaa aaaaaaadaa aaaaaaaada aadaaaadaa 2750
    aaaaaaaaaa aaaaaaaaaa aag 2773
<210> 34
<211> 678
<212> PRT
<213> Homo Sapien
<400> 34
    Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met
        1 5 10
    Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr
                        20 25 30
Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn
        35 40 45
    Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val
        50 55 60
    Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly
    Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val
        80 85 90
    His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg
        95 100 105
    Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly
        110 115 120
    Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val
    125 130 135
```



```
<213> Homo Sapien
<400> 35
    ccgagcacag gagattgcct gcgtttagga ggtggctgcg ttgtgggaaa 50
    agctatcaag gaagaaattg ccaaaccatg tctttttttc tgttttcaga 100
    gtagttcaca acagatctga gtgttttaat taagcatgga atacagaaaa 150
    caacaaaaaa cttaagcttt aatttcatct ggaattccac agttttctta 200
    gctccctgga cccggttgac ctgttggctc ttcccgctgg ctgctctatc 250
    acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggctcg 300
    cgtgcttctg agctgctgtg gatggcctcg gctctctgga ctgtccttcc 350
    gagtaggatg tcactgagat ccctcaaatg gagcctcctg ctgctgtcac 400
    tcctgagttt ctttgtgatg tggtacctca gccttcccca ctacaatgtg 450
    atagaacgcg tgaactggat gtacttctat gagtatgagc cgatttacag 500
    acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550
    atccatttct ggtcattctg gtgacctccc acccttcaga tgtgaaagcc 600
    aggcaggcca ttagagttac ttggggtgaa aaaaagtctt ggtggggata 650
    tgaggttctt acatttttct tattaggcca agaggctgaa aaggaagaca 700
    aaatgttggc attgtcctta gaggatgaac accttcttta tggtgacata 750
    atccgacaag attttttaga cacatataat aacctgacct tgaaaaccat 800
    tatggcattc aggtgggtaa ctgagttttg ccccaatgcc aagtacgtaa }85
    tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900
    cttttaaacc taaaccactc agagaagttt ttcacaggtt atcctctaat 950
    tgataattat tcctatagag gattttacca aaaaacccat atttcttacc 1000
    aggagtatcc tttcaaggtg ttccctccat actgcagtgg gttgggttat 1050
    ataatgtcca gagatttggt gccaaggatc tatgaaatga tgggtcacgt 1100
    aaaacccatc aagtttgaag atgtttatgt cgggatctgt ttgaatttat 1150
    taaaagtgaa cattcatatt ccagaagaca caaatctttt ctttctatat 1200
    agaatccatt tggatgtctg tcaactgaga cgtgtgattg cagcccatgg 1250
    cttttcttcc aaggagatca tcactttttg gcaggtcatg ctaaggaaca 1300
    ccacatgcca ttattaactt cacattctac aaaaagccta gaaggacagg 1350
```

```
ataccttgtg gaaagtgtta aataaagtag gtactgtgga aaattcatgg 1400
ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450
actggagact ggagggttac acttgtgatt tattagtcag gcccttcaaa 1500
gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550
gaaattaata ggaccaaaca atttggacat gtcattctgt agactagaat 1600
ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650
aacaatgtag agttttattt attgaacaat gtagtcactt gaaggttttg 1700
tgtatatctt atgtggatta ccaatttaaa aatatatgta gttctgtgtc 1750
aaaaacttc ttcactgaag ttatactgaa caaaatttta cctgtttttg 1800
gtcatttata aagtacttca agatgttgca gtatttcaca gttattatta 1850
tttaaaatta cttcaacttt gtgtttttaa atgttttgac gatttcaata 1900
caagataaaa aggatagtga atcattcttt acatgcaaac attttccagt 1950
tacttaactg atcagtttat tattgataca tcactccatt aatgtaaagt 2000
cataggtcat tattgcatat cagtaatctc ttggactttg ttaaatattt 2050
tactgtggta atatagagaa gaattaaagc aagaaaatct gaaaa 2095
<210> 36
<211> 331
<212> PRT
<213> Homo Sapien
<400> 36
    Met Ala Ser Ala Leu Trp Thr Val Leu Pro Ser Arg Met Ser Leu
        1 5 10
Arg Ser Leu Lys Trp Ser Leu Leu Leu Leu Ser Leu Leu Ser Phe
Phe Val Met Trp Tyr Leu Ser Leu Pro His Tyr Asn Val Ile Glu
35 40 45
Arg Val Asn Trp Met Tyr Phe Tyr Glu Tyr Glu Pro Ile Tyr Arg
                                    50 55 60
Gln Asp Phe His Phe Thr Leu Arg Glu His Ser Asn Cys Ser His
                                    65 70 75
Gln Asn Pro Phe Leu Val Ile Leu Val Thr Ser His Pro Ser Asp
                    80 85 90
Val Lys Ala Arg Gln Ala Ile Arg Val Thr Trp Gly Glu Lys Lys
                95 100 105
```



```
tacacagtca ttaatgaagc ctgccctgga gcagagtgga atatcatgtg 150
tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaga 200
gggaagtcgt gggttatacc atcccttgct gcaggaatga ggagaatgag 250
tgtgactcct gcctgatcca cccaggttgt accatctttg aaaactgcaa 300
gagctgccga aatggctcat gggggggtac cttggatgac ttctatgtga 350
aggggttcta ctgtgcagag tgccgagcag gctggtacgg aggagactgc 400
atgcgatgtg gccaggttct gcgagcccca aagggtcaga ttttgttgga 450
aagctatccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500
ggtttgtcat ccaactaaga tttgtcatgt tgagtctgga gtttgactac 550
atgtgccagt atgactatgt tgaggttcgt gatggagaca accgcgatgg 600
ccagatcatc aagcgtgtct gtggcaacga gcggccagct cctatccaga 650
gcataggatc ctcactccac gtcctcttcc actccgatgg ctccaagaat 700
tttgacggtt tccatgccat ttatgaggag atcacagcat gctcctcatc 750
cccttgtttc catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800
agtgtgcctg cttggcaggc tatactgggc agcgctgtga aaatctcctt }85
gaagaaagaa actgctcaga ccctgggggc ccagtcaatg ggtaccagaa 900
aataacaggg ggccctgggc ttatcaacgg acgccatgct aaaattggca 950
ccgtggtgtc tttcttttgt aacaactcct atgttcttag tggcaatgag 1000
aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050
cataaaagcc tgccgagaac caaagatttc agacctggtg agaaggagag 1100
ttcttccgat gcaggttcag tcaagggaga caccattaca ccagctatac 1150
tcagcggcct tcagcaagca gaaactgcag agtgccccta ccaagaagcc 1200
agcccttccc tttggagatc tgcccatggg ataccaacat ctgcataccc 1250
agctccagta tgagtgcatc tcacccttct accgccgcct gggcagcagc 1300
aggaggacat gtctgaggac tgggaagtgg agtgggcggg caccatcctg 1350
catccctatc tgcgggaaaa ttgagaacat cactgctcca aagacccaag 1400
ggttgcgctg gccgtggcag gcagccatct acaggaggac cagcggggtg 1450
catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcggtgc 1500
cctggtgaat gagcgcactg tggtggtggc tgcccactgt gttactgacc 1550
```



```
<400> 38 (eu Gly Cys Trp Thr Gln Leu Gly Leu Thr Phe Leu Gln 
    Glu Ala Cys Pro Gly Ala Glu Trp Asn Ile Met Cys Arg Glu Cys
    Cys Glu Tyr Asp Gln Ile Glu Cys Val Cys Pro Gly Lys Arg Glu
    Val Val Gly Tyr Thr Ile Pro Cys Cys Arg Asn Glu Glu Asn Glu
        65 70 75
    Cys Asp Ser Cys Leu Ile His Pro Gly Cys Thr Ile Phe Glu Asn
    Cys Lys Ser Cys Arg Asn Gly Ser Trp Gly Gly Thr Leu Asp Asp
        95 100 . 105
    Phe Tyr Val Lys Gly Phe Tyr Cys Ala Glu Cys Arg Ala Gly Trp
        110 115 120
    Tyr Gly Gly Asp Cys Met Arg Cys Gly Gln Val Leu Arg Ala Pro
        125 130 135
    Lys Gly Gln Ile Leu Leu Glu Ser Tyr Pro Leu Asn Ala His Cys
        140 145 150
    Glu Trp Thr Ile His Ala Lys Pro Gly Phe Val Ile Gln Leu Arg
        155 160
                            165
    Phe Val Met Leu Ser Leu Glu Phe Asp Tyr Met Cys Gln Tyr Asp
        170 175 180
    Tyr Val Glu Val Arg Asp Gly Asp Asn Arg Asp Gly Gln Ile Ile
    Lys Àrg Val Cys Gly Asn Glu Arg Pro Ala Pro Ile Gln Ser Ile
        200 205 210
    Gly Ser Ser Leu His Val Leu Phe His Ser Asp Gly Ser Lys Asn
    215 220 225
    Phe Asp Gly Phe His Ala Ile Tyr Glu Glu Ile Thr Ala Cys Ser
        230 235 240
Ser Ser Pro Cys Phe His Asp Gly Thr Cys Val Leu Asp Lys Ala
    245 250 255
Gly Ser Tyr Lys Cys Ala Cys Leu Ala Gly Tyr Thr Gly Gln Arg
    260 265 270
Cys Glu Asn Leu Leu Glu Glu Arg Asn Cys Ser Asp Pro Gly Gly
    275 280
    285
```



```
    caccagcata caatgatgga agaattagat gtggtgatat tcttcttgct 2000
    gtcaatggta gaagtacatc aggaatgata catgcttgct tggcaagact 2050
    gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100
    gcactttttt atagaatcaa tgatgggtca gaggaaaaca gaaaaatcac 2150
    aaataggcta agaagttgaa acactatatt tatcttgtca gtttttatat 2200
    ttaaagaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250
    tgaaagccag ttacacctca gaaaatatga ttccaaaaaa attaaaacta 2300
    ctagtttttt ttcagtgtgg aggatttctc attactctac aacattgttt }235
    atattttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400
    tgtatacccc actgaattca agctgattta aatttaaaat ttggtatatg 2450
    ctgaagtctg ccaagggtac attatggcca tttttaattt acagctaaaa 2500
    tattttttaa aatgcattgc tgagaaacgt tgctttcatc aaacaagaat 2550
    aaatattttt cagaagttaa a 2571
<210>.40
<211> 632
<212> PRT
<213> Homo Sapien
<400> 40
    Met Lys Ala Leu Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala
        1 5 10
    Asn Tyr Ile Asp Asn Val Gly Asn Leu His Phe Leu Tyr Ser Glu
                    20 25 30
    Leu Cys Lys Gly Ala Ser His Tyr Gly Leu Thr Lys Asp Arg Lys
    Arg Arg Ser Gln Asp Gly Cys Pro Asp Gly Cys Ala Ser Leu Thr
        50 55 60
    Ala Thr Ala Pro Ser Pro Glu Val Ser Ala Ala Ala Thr Ile Ser
        65 70 75
    Leu Met Thr Asp Glu Pro Gly Leu Asp Asn Pro Ala Tyr Val Ser
        80 85 90
    Ser Ala Glu Asp Gly Gln Pro Ala Ile Ser Pro Val Asp Ser Gly
        95 100 105
    Arg Ser Asn Arg Thr Arg Ala Arg Pro Phe Glu Arg Ser Thr Ile
            110 115 120
    Arg Ser Arg Ser Phe Lys Lys Ile Asn Arg Ala Leu Ser Val Leu
```



```
attcacgtaa taaaaaacat gggcttcaac ctgactttcc acctttccta 150
caaattccga ttactgttgc tgttgacttt gtgcctgaca gtggttgggt 200
gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacca 400
gatctcactt tggaagaggt acaggcagaa aatcccaaag tgtccagagg 450
ccggtatcgc cotcaggaat gtaaagcttt acagagggtc gccatcctcg 500
ttccccaccg gaacagagag aaacacctga tgtacctgct ggaacatctg 550
catcccttcc tgcagaggca gcagctggat tatggcatct acgtcatcca 600
ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtgggct 650
atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
gtggacctgg tacccgagaa tgactttaac ctttacaagt gtgaggagca 750
tcccaagcat ctggtggttg gcaggaacag cactgggtac aggttacgtt 800
acagtggata ttttgggggt gttactgccc taagcagaga gcagtttttc 850
aaggtgaatg gattctctaa caactactgg ggatggggag gcgaagacga 900
tgacctcaga ctcagggttg agctccaaag aatgaaaatt tcccggcccc 950
tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000
aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgtcacgagt 1050
ctggagaaca gatgggttga gtagttgttc ttataaatta gtatctgtgg 1100
aacacaatcc tttatatatc aacatcacag tggatttctg gtttggtgca 1150
tgaccctgga tcttttggtg atgtttggaa gaactgattc tttgtttgca 1200
ataattttgg cctagagact tcaaatagta gcacacatta agaacctgtt 1250
acagctcatt gttgagctga atttttcctt tttgtatttt cttagcagag 1300
ctcctggtga tgtagagtat aaaacagttg taacaagaca gctttcttag 1350
tcattttgat catgagggtt aaatattgta atatggatac ttgaaggact 1400
ttatataaaa ggatgactca aaggataaaa tgaacgctat ttgaggactc 1450
tggttgaagg agatttattt aaatttgaag taatatatta tgggataaaa 1500
ggccacagga aataagactg ctgaatgtct gagagaacca gagttgttct 1550
```

```
    cgtccaaggt agaaaggtac gaagatacaa tactgttatt catttatcct 1600
    gtacaatcat ctgtgaagtg gtggtgtcag gtgagaaggc gtccacaaaa 1650
    gaggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700
    ggtagcagga gggtggagtg tcggctgcaa aggcagcagt agctgagctg 1750
    gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgccttc 1800
cagtgatgcc caccagagaa tacattctct attagttttt aaagagtttt 1850
tgtaaaatga ttttgtacaa gtaggatatg aattagcagt ttacaagttt 1900
acatattaac taataataaa tatgtctatc aaatacctct gtagtaaaat 1950
gtgaaaaagc aaaa 1964
<210> 42
<211> 344
<212> PRT
<213> Homo Sapien
<400> 42
    Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu
        1 5 10
    Leu Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr
    Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys
        35 40 45
    Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly
                        50 55 60
    Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp
        65 70 75
    Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu
        80 85 90
    Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn
    Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala
        110 115 120
    Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys
        125 130 135
    His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg
        140 145 150
    Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly
        155 160
        1 6 5
```



```
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 450
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 485
<210> 44
<211> 84
<212> PRT
<213> Homo Sapien
<400> 44
    Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu Leu
        1 5 10
    Leu Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
                    20 25 30
    Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
    Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Arg Asp
                                    50 55 60
    Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
                    65 70 75
    Ser Lys Cys Gly Met Cys Cys Lys Thr
        80
<210> 45
<211> 1076
<212> DNA
<213> Homo Sapien
<400> 45
    gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50
    caacatgcct caccctcatc tatatccttt ggcagctcac agggtcagca 100
    gcctctggac ccgtgaaaga gctggtcggt tccgttggtg gggccgtgac 150
    tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200
    tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250
    gtgacccaaa atcgtaatag ggagagagta gacttcccag atggaggcta 300
    ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350
    tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400
    ctgcatgtct acgagcacct gtcaaagcct aaagtcacca tgggtctgca 450
    gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500
    atggggaaga ggatgtgatt tatacctgga aggccctggg gcaagcagcc 550
```

```
    aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600
    aagtgatatg accttcatct gcgttgccag gaaccctgtc agcagaaact 650
    tctcaagccc catccttgcc aggaagctct gtgaaggtgc tgctgatgac 700
    ccagattcct ccatggtcct cctgtgtctc ctgttggtgc ccctcctgct 750
    cagtctcttt gtactggggc tatttctttg gtttctgaag agagagagac 800
    aagaagagta cattgaagag aagaagagag tggacatttg tcgggaaact 850
    cctaacatat gcccccattc tggagagaac acagagtacg acacaatccc 900
    tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950
    ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcacg 1000
    atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050
    agtgcactcc cctaagtctc tgctca 1076
<210> 46
<211> 335
<212> PRT
<213> Homo Sapien
<400> 46
    Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp
        1 5 10
Gln Leu Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val
    2 0 ~ 2 5 ~ 3 0
Gly Ser Val Gly Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val
    35 40 45
Lys Gln Val Asp Ser Ile Val Trp Thr Phe Asn Thr Thr Pro Leu
    50 55 60
    Val Thr Ile Gln Pro Glu Gly Gly Thr Ile Ile Val Thr Gln Asn
        65 70 75
Arg Asn Arg Glu Arg Val Asp Phe Pro Asp Gly Gly Tyr Ser Leu
        80 85 90
Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile Tyr Tyr Val
        95 100 105
Gly Ile Tyr Ser Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr
    110 115 120
Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Met
        125 130 135
Gly Leu Gln Ser Asn Lys Asn Gly Thr Cys Val Thr Asn Leu Thr
    140 145 150
```



```
    agtgtgatca cagtcattgg tgctctgtat tgcatgctga tatccatcca 350
    ggctctctta aaaggtcctc tcatgtgtaa ttctccaagc aacagtaatg 400
    ccaattgtga attttcattg aaaaacatca gtgacattca tccagaatcc 450
    ttcaacttgc agtggttttt caatgactct tgtgcacctc ctactggttt 500
    caataaaccc accagtaacg acaccatggc gagtggctgg agagcatcta 550
    gtttccactt cgattctgaa gaaaacaaac ataggcttat ccacttctca 600
    gtatttttag gtctattgct tgttggaatt ctggaggtcc tgtttgggct 650
    cagtcagata gtcatcggtt tccttggctg tctgtgtgga gtctctaagc 700
    gaagaagtca aattgtgtag tttaatggga ataaaatgta agtatcagta 750
    gtttgaaaaa aaaaaa 766
<210> 48
<211> 229
<212> PRT
<213> Homo Sapien
<400>48
    Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu
        1 5 10
        Leu Val Leu Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu
            20 25 30
        Ile Val Ser Leu Val Glu Glu Asp Gln Phe Ser Gln Asn Pro Ile
        Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu
        50 55 60
        Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg
        65 70 75
    Ala Cys Cys Asn Asn Arg Thr Gly Met Phe Leu Ser Ser Phe Phe
        80 85 90
    Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser
        95 100 105
    Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser
        110 115 120
    Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp
        125 130 135
    Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser
    Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr
```



```
ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950
cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000
gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050
agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100
tgagtcctcc tggggatcca gcaccggctc ctcctccggc aaccacggtg 1150
ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200
gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250
agtttccagc aacatgaggg aaataagcaa agagggcaat cgcctccttg 1300
gaggctctgg agacaattat cgggggcaag ggtcgagctg gggcagtgga 1350
ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400
tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450
gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500
ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550
ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600
aaataaacct tagctgcccc acaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1734
<210> 52
<211> 440
<212> PRT
<213> Homo Sapien
<400> 52
    Met Lys Phe Gln Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys
        1 5 10
    Leu Gly Ser Gly Glu Ala Gly Pro Leu Gln Ser Gly Glu Glu Ser
                            20 25 30
Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp
                        35 40 45
Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly
Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gln Gly Thr
                                    65 70 75
Arg Glu Ala Val Gly Thr Gly Val Arg Gln Val Pro Gly Phe Gly
        80
                            85

```

 Gly Asp Asn Tyr Arg Gly Gln Gly Ser Ser Trp Gly Ser Gly Gly
 380 385 390
 Gly Asp Ala Val Gly Gly Val Asn Thr Val Asn Ser Glu Thr Ser
 395 400 405
 Pro Gly Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser
 410 415 420
 Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gln Arg
 425 430 435
 Ser Ser Arg Ile Pro
 440
 <210> 53
<211> 1676
<212> DNA
<213> Homo Sapien
<400> 53
ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg 50
ctgagcctgc cctggctggg cctcagaccg gtggcaatgt ccccatggct 100
actcctgctg ctggttgtgg gctcctggct actcgcccgc atcctggctt 150
ggacctatgc cttctataac aactgccgcc ggctccagtg tttcccacag 200
cccccaaaac ggaactggtt ttggggtcac ctgggcctga tcactcctac 250
agaggagggc ttgaaggact cgacccagat gtcggccacc tattcccagg 300
gctttacggt atggctgggt cccatcatcc ccttcatcgt tttatgccac 350
cctgacacca tccggtctat caccaatgcc tcagctgcca ttgcacccaa 400
ggataatctc ttcatcaggt tcctgaagcc ctggctggga gaagggatac 450
tgctgagtgg cggtgacaag tggagccgcc accgtcggat gctgacgccc 500
gccttccatt tcaacatcct gaagtcctat ataacgatct tcaacaagag 550
tgcaaacatc atgcttgaca agtggcagca cctggcctca gagggcagca 600
gtcgtctgga catgtttgag cacatcagcc tcatgacctt ggacagtcta 650
cagaaatgca tcttcagctt tgacagccat tgtcaggaga ggcccagtga 700
atatattgcc accatcttgg agctcagtgc ccttgtagag aaaagaagcc 750
agcatatcct ccagcacatg gactttctgt attacctctc ccatgacggg 800
cggcgcttcc acagggcctg ccgcctggtg catgacttca cagacgctgt 850
catccgggag cggcgtcgca ccctccccac tcagggtatt gatgattttt 900
tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950

```



```

aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 644
<210> 56
<211> 77
<212> PRT
<213> Homo Sapien
<400> 56
Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg
1 5 10 15
Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr Leu
20 25 . 30
Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe
35 40 45
Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe
50 5560
Ile Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys $65 \quad 70 \quad 75$ Leu Ala
<210> 57
<211> 3334
<212> DNA
<213> Homo Sapien
<400> 57
cggctcgagc tcgagccgaa tcggctcgag gggcagtgga gcacccagca 50
ggccgccaac atgctctgtc tgtgcctgta cgtgccggtc atcggggaag 100
cccagaccga gttccagtac tttgagtcga aggggctccc tgccgagctg 150
aagtccattt tcaagctcag tgtcttcatc ccctcccagg aattctccac 200
ctaccgccag tggaagcaga aaattgtaca agctggagat aaggaccttg 250
atgggcagct agactttgaa gaatttgtcc attatctcca agatcatgag 300
aagaagctga ggctggtgtt taagattttg gacaaaaaga atgatggacg 350
cattgacgcg caggagatca tgcagtccct gcgggacttg ggagtcaaga 400
tatctgaaca gcaggcagaa aaaattctca agagcatgga taaaaacggc 450
acgatgacca tcgactggaa cgagtggaga gactaccacc tcctccaccc 500
cgtggaaaac atccccgaga tcatcctcta ctggaagcat tccacgatct 550
ttgatgtggg tgagaatcta acggtcccgg atgagttcac agtggaggag 600
aggcagacgg ggatgtggtg gagacacctg gtggcaggag gtggggcagg 650

```
```

ggccgtatcc agaacctgca cggcccccct ggacaggctc aaggtgctca 700
tgcaggtcca tgcctcccgc agcaacaaca tgggcatcgt tggtggcttc 750
actcagatga ttcgagaagg aggggccagg tcactctggc ggggcaatgg 800
catcaacgtc ctcaaaattg cccccgaatc agccatcaaa ttcatggcct 850
atgagcagat caagcgcctt gttggtagtg accaggagac tctgaggatt 900
cacgagaggc ttgtggcagg gtccttggca ggggccatcg cccagagcag 950
catctaccca atggaggtcc tgaagacccg gatggcgctg cggaagacag 1000
gccagtactc aggaatgctg gactgcgcca ggaggatcct ggccagagag 1050
ggggtggccg ccttctacaa aggctatgtc cccaacatgc tgggcatcat 1100
cccctatgcc ggcatcgacc ttgcagtcta cgagacgctc aagaatgcct 1150
ggctgcagca ctatgcagtg aacagcgcgg accccggcgt gtttgtgctc 1200
ctggcctgtg gcaccatgtc cagtacctgt ggccagctgg ccagctaccc 1250
cctggcccta gtcaggaccc ggatgcaggc gcaagcctct attgagggcg 1300
ctccggaggt gaccatgagc agcctcttca aacatatcct gcggaccgag 1350
ggggccttcg ggctgtacag ggggctggcc cccaacttca tgaaggtcat 1400
cccagctgtg agcatcagct acgtggtcta cgagaacctg aagatcaccc 1450
tgggcgtgca gtcgcggtga cggggggagg gccgcccggc agtggactcg 1500
ctgatcctgg gccgcagcct ggggtgtgca gccatctcat tctgtgaatg 1550
tgccaacact aagctgtctc gagccaagct gtgaaaaccc tagacgcacc 1600
cgcagggagg gtggggagag ctggcaggcc cagggcttgt cctgctgacc 1650
ccagcagacc ctcctgttgg ttccagcgaa gaccacaggc attccttagg 1700
gtccagggtc agcaggctcc gggctcacat gtgtaaggac aggacatttt 1750
ctgcagtgcc tgccaatagt gagcttggag cctggaggcc ggcttagttc 1800
ttccatttca cccttgcagc cagctgttgg ccacggcccc tgccctctgg 1850
tctgccgtgc atctccctgt gccctcttgc tgcctgcctg tctgctgagg 1900
taaggtggga ggagggctac agcccacatc ccaccccctc gtccaatccc 1950
ataatccatg atgaaaggtg aggtcacgtg gcctcccagg cctgacttcc 2000
caacctacag cattgacgcc aacttggctg tgaaggaaga ggaaaggatc 2050
tggccttgtg gtcactggca tctgagccct gctgatggct ggggctctcg 2100

```
```

ggcatgcttg ggagtgcagg gggctcgggc tgcctggcct ggctgcacag 2150
aaggcaagtg ctggggctca tggtgctctg agctggcctg gaccctgtca 2200
ggatgggccc cacctcagaa ccaaactcac tgtccccact gtggcatgag 2250
ggcagtggag caccatgttt gagggcgaag ggcagagcgt ttgtgtgttc 2300
tggggaggga aggaaaaggt gttggaggcc ttaattatgg actgttggga 2350
aaagggtttt gtccagaagg acaagccgga caaatgagcg acttctgtgc 2400
ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450
ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgcagcggga 2500
ccagccccac attccacttg tgtcactgct tggaacctat ttattttgta 2550
tttatttgaa cagagttatg tcctaactat ttttatagat ttgtttaatt 2600
aatagcttgt cattttcaag ttcatttttt attcatattt atgttcatgg 2650
ttgattgtac cttcccaagc ccgcccagtg ggatgggagg aggaggagaa 2700
ggggggcctt gggccgctgc agtcacatct gtccagagaa attccttttg 2750
ggactggagg cagaaaagcg gccagaaggc agcagccctg gctcctttcc 2800
tttggcaggt tggggaaggg cttgccccca gccttaggat ttcagggttt 2850
gactgggggc gtggagagag agggaggaac ctcaataacc ttgaaggtgg 2900
aatccagtta tttcctgcgc tgcgagggtt tctttatttc actcttttct 2950
gaatgtcaag gcagtgaggt gcctctcact gtgaatttgt ggtgggcggg 3000
ggctggagga gagggtgggg ggctggctcc gtccctccca gccttctgct 3050
gcccttgctt aacaatgccg gccaactggc gacctcacgg ttgcacttcc 3100
attccaccag aatgacctga tgaggaaatc ttcaatagga tgcaaagatc 3150
aatgcaaaaa ttgttatata tgaacatata actggagtcg tcaaaaagca 3200
aattaagaaa gaattggacg ttagaagttg tcatttaaag cagccttcta 3250
ataaagttgt ttcaaagctg aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 3334
<210> 58
<211> 469
<212> PRT
<213> Homo Sapien
<400> 58
Met Leu Cys Leu Cys Leu Tyr Val Pro Val Ile Gly Glu Ala Gln

```

Thr Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu
25
Lys Ser Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe
35

Ser Thr Tyr Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp 505560

Lys Asp Leu Asp \(\underset{6}{\text { Gly }} \begin{array}{r}\text { Gln Leu Asp Phe Glu Glu Phe Val His } \\ 70\end{array} \quad \begin{array}{r}\text { Tyr } \\ 75\end{array}\)

Leu Gln Asp His Glu Lys Lys Leu Arg Leu Val Phe Lys Ile Leu 808590

Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu \(\begin{array}{r}\text { Gle Met } \\ 95\end{array} \begin{array}{r}100\end{array} \quad 105\)

Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu 110115120

Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp 125130135

Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn 140145150

Ile Pro Glu Ile Ile Leu Tyr Trp Lys His Ser Thr Ile Phe Asp 155160 165

Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu 170175180

Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly Gly 185190195

Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu 200205210

Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly 215220

225
Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Arg 230235 240

Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro 245250255

Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu 260 . 265270

Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val 275280285

Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro
\begin{tabular}{l} 
Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln \\
\\
\hline
\end{tabular}

Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys 380385390

Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met 395400405

Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser 410415420

Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu \(\begin{array}{r}430 \\ 425\end{array}\)
Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val 440 . 445 450

Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly 455460465

Val Gln Ser Arg
<210> 59
<211> 1658
<212> DNA
<213> Homo Sapien
<400> 59
ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc 50
ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100
gcatcatcat tattctggct ggagcaattg cactcatcat tggctttggt 150
atttcaggga gacactccat cacagtcact actgtcgcct cagctgggaa 200
cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250
tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300
catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350
```

cagaggccgg acagcagtgt ttgctgatca agtgatagtt ggcaatgcct 400
ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450
tatatcatca cttctaaagg caaggggaat gctaaccttg agtataaaac 500
tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550
agaccttgcg gtgtgaggct ccccgatggt tcccccagcc cacagtggtc 600
tgggcatccc aagttgacca gggagccaac ttctcggaag tctccaatac 650
cagctttgag ctgaactctg agaatgtgac catgaaggtt gtgtctgtgc 700
tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac }75
attgccaaag caacagggga tatcaaagtg acagaatcgg agatcaaaag }80
gcggagtcac ctacagctgc taaactcaaa ggcttctctg tgtgtctctt }85
ctttctttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900
ctaaaataat gtgccttggc cacaaaaaag catgcaaagt cattgttaca 950
acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000
ttctgggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050
agcaagaaac aaaaagaagc caaaagcaga aggctccaat atgaacaaga 1100
taaatctatc ttcaaagaca tattagaagt tgggaaaata attcatgtga 1150
actagacaag tgtgttaaga gtgataagta aaatgcacgt ggagacaagt 1200
gcatccccag atctcaggga cctccccctg cotgtcacct ggggagtgag 1250
aggacaggat agtgcatgtt ctttgtctct gaatttttag ttatatgtgc 1300
tgtaatgttg ctctgaggaa gcccctggaa agtctatccc aacatatcca 1350
catcttatat tccacaaatt aagctgtagt atgtacccta agacgctgct 1400
aattgactgc cacttcgcaa ctcaggggcg gctgcatttt agtaatgggt 1450
caaatgattc actttttatg atgcttccaa aggtgccttg gcttctcttc 1500
ccaactgaca aatgccaaag ttgagaaaaa tgatcataat tttagcataa 1550
acagagcagt cggggacacc gattttataa ataaactgag caccttcttt 1600
ttaaacaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaa 1658
<210> 60
<211> 282

```
```

<212> PRT
<213> Homo Sapien
<400> 60
Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile
1 5 10
Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly
20 25 30
Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala
35 40 45
Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro
50 55 60
Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly
Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu
80 85 90
Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala
95 100 105
Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val
110 115 120
Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser
125 130
135
Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe
140 145 150
Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr
155 160 165
Leu Arg Cys Glu Ala Pro Arg Trp Phe Pro Gln Pro Thr Val Val
170 -175 -180
Trp Ala Ser Gln Val Asp Gln Gly Ala Asn Phe Ser Glu Val Ser
185 190 195
Asn Thr Ser Phe Glu Leu Asn Ser Glu Asn Val Thr Met Lys Val
Val Ser Val Leu Tyr Asn Val Thr Ile Asn Asn Thr Tyr Ser Cys
215 220 225
Met Ile Glu Asn Asp Ile Ala Lys Ala Thr Gly Asp Ile Lys Val
230 235
240
Thr Glu Ser Glu Ile Lys Arg Arg Ser His Leu Gln Leu Leu Asn
245 250 255
Ser Lys Ala Ser Leu Cys Val Ser Ser Phe Phe Ala Ile Ser Trp
260 265 270

```
```

Ala Leu Leu Pro Leu Ser Pro Tyr Leu Met Leu Lys
<210> 61
<211> 1617
<212> DNA
<213> Homo Sapien
<400> 61
tgacgtcaga atcaccatgg ccagctatcc ttaccggcag ggctgcccag 50
gagctgcagg acaagcacca ggagcccctc cgggtagcta ctaccctgga 100
ccccccaata gtggagggca gtatggtagt gggctacccc ctggtggtgg 150
ttatgggggt cctgcccctg gagggcctta tggaccacca gctggtggag 200
ggccctatgg acaccccaat cotgggatgt tcccctctgg aactccagga 250
ggaccatatg gcggtgcagc tcccgggggc ccctatggtc agccacctcc 300
aagttcctac ggtgcccagc agcctgggct ttatggacag ggtggcgccc 350
ctcccaatgt ggatcctgag gcctactcct ggttccagtc ggtggactca 400
gatcacagtg gctatatctc catgaaggag ctaaagcagg ccctggtcaa 450
ctgcaattgg tcttcattca atgatgagac ctgcctcatg atgataaaca 500
tgtttgacaa gaccaagtca ggccgcatcg atgtctacgg cttctcagcc 550
ctgtggaaat tcatccagca gtggaagaac ctcttccagc agtatgaccg 600
ggaccgctcg ggctccatta gctacacaga gctgcagcaa gctctgtccc 650
aaatgggcta caacctgagc ccccagttca cccagcttct ggtctcccgc 700
tactgcccac gctctgccaa tcctgccatg cagcttgacc gcttcatcca 750
ggtgtgcacc cagctgcagg tgctgacaga ggccttccgg gagaaggaca }80
cagctgtaca aggcaacatc cggctcagct tcgaggactt cgtcaccatg 850
acagcttctc ggatgctatg acccaaccat ctgtggagag tggagtgcac 900
cagggacctt tcctggcttc ttagagtgag agaagtatgt ggacatctct 950
tcttttcctg tccctctaga agaacattct cocttgcttg atgcaacact 1000
gttccaaaag agggtggaga gtcctgcatc atagccacca aatagtgagg 1050
accggggctg aggccacaca gataggggcc tgatggagga gaggatagaa 1100
gttgaatgtc ctgatggcca tgagcagttg agtggcacag cctggcacca 1150
ggagcaggtc cttgtaatgg agttagtgtc cagtcagctg agctccaccc 1200

```
```

 tgatgccagt ggtgagtgtt catcggcctg ttaccgttag tacctgtgtt 1250
 ccctcaccag gccatcctgt caaacgagcc cattttctcc aaagtggaat 1300
ctgaccaagc atgagagaga tctgtctatg ggaccagtgg cttggattct 1350
gccacaccca taaatccttg tgtgttaact tctagctgcc tggggctggc 1400
cctgctcaga caaatctgct ccctgggcat ctttggccag gcttctgccc 1450
cctgcagctg ggacccctca cttgcctgcc atgctctgct cggcttcagt 1500
ctccaggaga cagtggtcac ctctccctgc caatactttt tttaatttgc 1550
attttttttc atttggggcc aaaagtccag tgaaattgta agcttcaata 1600
aaaggatgaa actctga 1617
<210> 62
<211> 284
<212> PRT
<213> Homo Sapien
<400> 62
Met Ala Ser Tyr Pro Tyr Arg Gln Gly Cys Pro Gly Ala Ala Gly
1 5 10 15
Gln Ala Pro Gly Ala Pro Pro Gly Ser Tyr Tyr Pro Gly Pro Pro
Asn Ser Gly Gly Gln Tyr Gly Ser Gly Leu Pro Pro Gly Gly Gly
35 40 45
Tyr Gly Gly Pro Ala Pro Gly Gly Pro Tyr Gly Pro Pro Ala Gly
Gly Gly Pro Tyr Gly His Pro Asn Pro Gly Met Phe Pro Ser Gly
65 70 75
Thr Pro Gly Gly Pro Tyr Gly Gly Ala Ala Pro Gly Gly Pro Tyr
80 85 90
Gly Gln Pro Pro Pro Ser Ser Tyr Gly Ala Gln Gln Pro Gly Leu
95 100 105
Tyr Gly Gln Gly Gly Ala Pro Pro Asn Val Asp Pro Glu Ala Tyr
110 115 120
Ser Trp Phe Gln Ser Val Asp Ser Asp His Ser Gly Tyr Ile Ser
125 130 135
Met Lys Glu Leu Lys Gln Ala Leu Val Asn Cys Asn Trp Ser Ser
140 145 150
Phe Asn Asp Glu Thr Cys Leu Met Met Ile Asn Met Phe Asp Lys
155 160 165

```

```

 ccacaccctg agggaatctg gggtatcaat aatcaacccc caggtaccag 750
 ctggggaaat attaatcggt atccaggagg cagctgggga aatattaatc 800
 ggtatccagg aggcagctgg gggaatatta atcggtatcc aggaggcagc 850
 tgggggaata ttcatctata cccaggtatc aataacccat ttcctcctgg 900
 agttctccgc cctcctggct cttcttggaa catcccagct ggcttcccta 950
 atcctccaag ccctaggttg cagtggggct agagcacgat agagggaaac 1000
 ccaacattgg gagttagagt cctgctcccg cccettgctg tgtgggctca 1050
 atccaggccc tgttaacatg tttccagcac tatccccact tttcagtgcc 1100
 tcccctgctc atctccaata aaataaaagc acttatgaaa aaaaaaaaaa 1150
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1200
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1234
 <210> 64
<211> 325
<212> PRT
<213> Homo Sapien
<400> 64
Met Gln Gly Arg Val Ala Gly Ser Cys Ala Pro Leu Gly Leu Leu
1 5 10
Leu Val Cys Leu His Leu Pro Gly Leu Phe Ala Arg Ser Ile Gly
20 25 30
Val Val Glu Glu Lys Val Ser Gln Asn Phe Gly Thr Asn Leu Pro
35 40 45
Gln Leu Gly Gln Pro Ser Ser Thr Gly Pro Ser Asn Ser Glu His
50 55 60
Pro Gln Pro Ala Leu Asp Pro Arg Ser Asn Asp Leu Ala Arg Val
65 70 75
Pro Leu Lys Leu Ser Val Pro Pro Ser Asp Gly Phe Pro Pro Ala
Gly Gly Ser Ala Val Gln Arg Trp Pro Pro Ser Trp Gly Leu Pro
95 100 105
Ala Met Asp Ser Trp Pro Pro Glu Asp Pro Trp Gln Met Met Ala
110 115 120
Ala Ala Ala Glu Asp Arg Leu Gly Glu Ala Leu Pro Glu Glu Leu
125 130
30
135
Ser Tyr Leu Ser Ser Ala Ala Ala Leu Ala Pro Gly Ser Gly Pro
140 1 145 150

```

```

ataaataaaa ttcggtatgc tg 422
<210> 66
<211> 78
<212> PRT
<213> Homo Sapien
<400> 66
Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly
1 5 10 15
Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu
20 25 30
Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu
35 40 45
Glu Leu Leu Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly
50 55 60
Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val
65 70 75
Cys Asn Thr
<210> 67
<211> 744
<212> DNA
<213> Homo Sapien
<400> 67
acggaccgag ggttcgaggg agggacacgg accaggaacc tgagctaggt 50
caaagacgcc cgggccaggt gccccgtcgc aggtgcccct ggccggagat 100
gcggtaggag gggcgagcgc gagaagcccc ttcctcggcg ctgccaaccc 150
gccacccagc ccatggcgaa ccccgggctg gggctgcttc tggcgctggg 200
cctgccgttc ctgctggccc gctggggccg agcctggggg caaatacaga 250
ccacttctgc aaatgagaat agcactgttt tgccttcatc caccagctcc 300
agctccgatg gcaacctgcg tccggaagcc atcactgcta tcatcgtggt 350
cttctccctc ttggctgcct tgctcctggc tgtggggctg gcactgttgg 400
tgcggaagct tcgggagaag cggcagacgg agggcaccta ccggcccagt 450
agcgaggagc agttctccca tgcagccgag gcccgggccc ctcaggactc 500
caaggagacg gtgcagggct gcctgcccat ctaggtcccc tctcctgcat 550
ctgtctccct tcattgctgt gtgaccttgg ggaaaggcag tgccctctct 600
gggcagtcag atccacccag tgcttaatag cagggaagaa ggtacttcaa 650

```
```

agactctgcc cotgaggtca agagaggatg gggctattca cttttatata 700
tttatataaa attagtagtg agatgtaaaa aaaaaaaaaa aaaa 744
<210> 68
<211> 123
<212> PRT
<213> Homo Sapien
<400> 68
Met Ala Asn Pro Gly Leu Gly Leu Leu Leu Ala Leu Gly Leu Pro
1 5 10
Phe Leu Leu Ala Arg Trp Gly Arg Ala Trp Gly Gln Ile Gln Thr
20 25 30
Thr Ser Ala Asn Glu Asn Ser Thr Val Leu Pro Ser Ser Thr Ser
35 40 45
Ser Ser Ser Asp Gly Asn Leu Arg Pro Glu Ala Ile Thr Ala Ile
50 55 60
Ile Val Val Phe Ser Leu Leu Ala Ala Leu Leu Leu Ala Val Gly
65 70 75
Leu Ala Leu Leu Val Arg Lys Leu Arg Glu Lys Arg Gln Thr Glu
80 85 90
Gly Thr Tyr Arg Pro Ser Ser Glu Glu Gln Phe Ser His Ala Ala
95 100 105
Glu Ala Arg Ala Pro Gln Asp Ser Lys Glu Thr Val Gln Gly Cys
110 115 120
Leu Pro Ile
<210> 69
<211> 3265
<212> DNA
<213> Homo Sapien
<400> 69
gccaggaata actagagagg aacaatgggg ttattcagag gttttgtttt 50
cctcttagtt ctgtgcctgc tgcaccagtc aaatacttcc ttcattaagc 100
tgaataataa tggctttgaa gatattgtca ttgttataga tcctagtgtg 150
ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200
ttctacgtac ctgtttgaag ccacagaaaa aagatttttt ttcaaaaatg 250
tatctatatt aattcctgag aattggaagg aaaatcctca gtacaaaagg 300
ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350

```
```

actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400
agaaaggcga atacattcac ttcacccctg accttctact tggaaaaaaa 450
caaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500
cctccggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550
gtgctaagtc aaaaaaaatc gaagcaacaa ggtgttccgc aggtatctct 600
ggtagaaata gagtttataa gtgtcaagga ggcagctgtc ttagtagagc 650
atgcagaatt gattctacaa caaaactgta tggaaaagat tgtcaattct 700
ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750
attgattctg ttgttgaatt ttgtaacgaa aaaacccata atcaagaagc 800
tccaagccta caaaacataa agtgcaattt tagaagtaca tgggaggtga 850
ttagcaattc tgaggatttt aaaaacacca tacccatggt gacaccacct 900
cctccacctg tcttctcatt gctgaagatc agtcaaagaa ttgtgtgctt 950
agttcttgat aagtctggaa gcatgggggg taaggaccgc ctaaatcgaa 1000
tgaatcaagc agcaaaacat ttcctgctgc agactgttga aaatggatcc 1050
tgggtgggga tggttcactt tgatagtact gccactattg taaataagct 1100
aatccaaata aaaagcagtg atgaaagaaa cacactcatg gcaggattac 1150
ctacatatcc tctgggagga acttccatct gctctggaat taaatatgca 1200
tttcaggtga ttggagagct acattcccaa ctcgatggat ccgaagtact }125
gctgctgact gatggggagg ataacactgc aagttcttgt attgatgaag 1300
tgaaacaaag tggggccatt gttcatttta ttgctttggg aagagctgct 1350
gatgaagcag taatagagat gagcaagata acaggaggaa gtcattttta 1400
tgtttcagat gaagctcaga acaatggcct cattgatgct tttggggctc 1450
ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500
aagggattaa cactgaatag taatgcctgg atgaacgaca ctgtcataat 1550
tgatagtaca gtgggaaagg acacgttctt tctcatcaca tggaacagtc 1600
tgcctcccag tatttctctc tgggatccca gtggaacaat aatggaaaat 1650
ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700
tgcaaaggtg ggcacttggg catacaatct tcaagccaaa gcgaacccag 1750
aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800

```

```

 aaaaaaaaaa aaaaaaadaa aaaaaaadaa aadaaaaaaa aaaaaaaaaa 3250
 aaaaaaaaaa aaaaa 3265
 <210> 70
<211> 919
<212> PRT
<213> Homo Sapien
<400> 70
Met Gly Leu Phe Arg Gly Phe Val Phe Leu Leu Val Leu Cys Leu
Leu His Gln Ser Asn Thr Ser Phe Ile Lys Leu Asn Asn Asn Gly
20 25 30
Phe Glu Asp Ile Val Ile Val Ile Asp Pro Ser Val Pro Glu Asp
Glu Lys Ile Ile Glu Gln Ile Glu Asp Met Val Thr Thr Ala Ser
50 55 60
Thr Tyr Leu Phe Glu Ala Thr Glu Lys Arg Phe Phe Phe Lys Asn
Val Ser Ile Leu Ile Pro Glu Asn Trp Lys Glu Asn Pro Gln Tyr
80 85 90
Lys Arg Pro Lys His Glu Asn His Lys His Ala Asp Val Ile Val
95 100 105
Ala Pro Pro Thr Leu Pro Gly Arg Asp Glu Pro Tyr Thr Lys Gln
110 115 120
Phe Thr Glu Cys Gly Glu Lys Gly Glu Tyr Ile His Phe Thr Pro
125 130 135
Asp Leu Leu Leu Gly Lys Lys Gln Asn Glu Tyr Gly Pro Pro Gly
Lys Leu Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe
155 160 165
Asp Glu Tyr Asn Glu Asp Gln Pro Phe Tyr Arg Ala Lys Ser Lys
170 175 180
Lys Ile Glu Ala Thr Arg Cys Ser Ala Gly Ile Ser Gly Arg Asn
185 190 195
Arg Val Tyr Lys Cys Gln Gly Gly Ser Cys Leu Ser Arg Ala Cys
200 205 210
Arg Ile Asp Ser Thr Thr Lys Leu Tyr Gly Lys Asp Cys Gln Phe
2 1 5 ~ 2 2 0 ~ 2 2 5
Phe Pro Asp Lys Val Gln Thr Glu Lys Ala Ser Ile Met Phe Met
230 235 240

```





```

 accaagatgc ttctgaaaat tgcattttat taccatttca aactattttt 3600
 taaaaataaa tacagttaac atagagtggt ttcttcattc atgtgaaaat 3650
 tattagccag caccagatgc atgagctaat tatctctttg agtccttgct 3700
 tctgtttgct cacagtaaac tcattgttta aaagcttcaa gaacattcaa 3750
 gctgttggtg tgttaaaaaa tgcattgtat tgatttgtac tggtagttta 3800
tgaaatttaa ttaaaacaca ggccatgaat ggaaggtggt attgcacagc 3850
taataaaata tgatttgtgg atatgaa 3877
<210> 72
<211> 532
<212> PRT
<213> Homo Sapien
<400> 72
Met Met Met Val Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val
Val Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr
20 25 30
Met Leu Ala Cys Thr Pro Lys Gly Asp Glu Glu Gln Leu Ala Leu
35 40 45
Pro Arg Ala Asn Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val
50 55 60
Leu Gln Glu Trp Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu
Lys Arg Gln Ile Ala Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser
80 85 90
Glu Gln Leu Arg Asn Gly Gln Tyr Gln Ala Ser Asp Ala Ala Gly
Leu Gly Leu Asp Arg Ser Pro Pro Glu Lys Thr Gln Ala Asp Leu
110 115 120
Leu Ala Phe Leu His Ser Gln Val Asp Lys Ala Glu Val Asn Ala
125 130 135
Gly Val Lys Leu Ala Thr Glu Tyr Ala Ala Val Pro Phe Asp Ser
140 145 150
Phe Thr Leu Gln Lys Val Tyr Gln Leu Glu Thr Gly Leu Thr Arg
155 160 165
His Pro Glu Glu Lys Pro Val Arg Lys Asp Lys Arg Asp Glu Leu
170 175 180
Val Glu Ala Ile Glu Ser Ala Leu Glu Thr Leu Asn Asn Pro Ala

```


```

ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900
cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950
gacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000
ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050
cagaactacc gagcccttca gcctctcaat cagcgcatgg tctttgcttc 1100
tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150
gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200
attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250
cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300
catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350
gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400
ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450
ggaagaactg cagagccttc agcctctcca aacatgtagg aggaaatgag 1500
gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550
gaagtttggg atatacccca aagtcctcta ccccctcact tttatggccc 1600
tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650
gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700
t 1701
<210> 74
<211> 337
<212> PRT
<213> Homo Sapien
<400> 74
Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala
1 5 10 15
Ala Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln
20 25 30
Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln
35 40 45
Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp
50 55 60
Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75

```

```

<213> Homo Sapien
<400> 75
tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50
gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100
cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150
ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200
cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250
tgacagctcc agagaagtgg aagagaaatc cagaagacct tcctgtttcc 300
atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350
taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400
tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450
gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500
gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550
atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600
tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650
gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700
aaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750
atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag }80
ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag }85
aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900
gactctgaag aaaacacgga aggtacttct ctcacccagc aagagtccct 950
cagcagaaca atacccccgg ataaaacagt cattgaatat gaatatgatg 1000
tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050
caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100
ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150
aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 1200
gaggaagagc catcgacgac cctggtcgac tgggatcccc aaactggcag 1250
gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300
agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 1350

```
```

 tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400
 catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450
 gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500
 cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550
 ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600
 cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtgggcc 1650
 tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 1700
 aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743
 <210> 76
<211> 442
<212> PRT
<213> Homo Sapien
<400> 76
Met Ser Tyr Asn Gly Leu His Gln Arg Val Phe Lys Glu Leu Lys
1 5 10 15
Leu Leu Thr Leu Cys Ser Ile Ser Ser Gln Ile Gly Pro Pro Glu
20 25 30
Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr
35 40 45
Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser
50 55 60
Met Gln Gln Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu
65 70 75
Asn Thr Lys Ser Asn Arg Thr Trp Ser Gln Cys Val Thr Asn His
80 85 90
Thr Leu Val Leu Thr Trp Leu Glu Pro Asn Thr Leu Tyr Cys Val
95 100 105
His Val Glu Ser Phe Val Pro Gly Pro Pro Arg Arg Ala Gln Pro
110 115 120
Ser Glu Lys Gln Cys Ala Arg Thr Leu Lys Asp Gln Ser Ser Glu
125 130 135
Phe Lys Ala Lys Ile Ile Phe Trp Tyr Val Leu Pro Ile Ser Ile
140 145 150
Thr Val Phe Leu Phe Ser Val Met Gly Tyr Ser Ile Tyr Arg Tyr
155 160 165
Ile His Val Gly Lys Glu Lys His Pro Ala Asn Leu Ile Leu Ile
170 175 180

```
\begin{tabular}{|c|c|c|c|}
\hline Tyr Gly Asn Glu Ph & Phe Asp Lys Arg Phe Ph
185 & \[
\begin{aligned}
& \text { Phe Val Pro Ala G. } \\
& 190
\end{aligned}
\] & \[
\begin{aligned}
& \text { Lys } \\
& 195
\end{aligned}
\] \\
\hline Ile Val Ile Asn Phe & Phe Ile Thr Leu Asn I 200 & Ile Ser Asp Asp Ser 205 & \[
\begin{aligned}
& \text { Lys } \\
& 210
\end{aligned}
\] \\
\hline Ile Ser His Gln A & Asp Met Ser Leu Leu G 215 & Gly Lys Ser Ser Asp 220 & \[
\begin{aligned}
& \text { Val } \\
& 225
\end{aligned}
\] \\
\hline Ser Ser Leu Asn A & \[
\begin{aligned}
& \text { Asp Pro Gln Pro Ser Gl } \\
& 230
\end{aligned}
\] & Gly Asn Leu Arg Pro 235 & \[
\begin{aligned}
& \text { Pro } \\
& 240
\end{aligned}
\] \\
\hline Gln Glu Glu Glu G & \[
\begin{aligned}
& \text { Glu Val Lys His L̇eu Gl } \\
& 245
\end{aligned}
\] & Gly Tyr Ala Ser His 250 & \[
\begin{aligned}
& \text { Leu } \\
& 255
\end{aligned}
\] \\
\hline Met Glu Ile Phe Cy & Cys Asp Ser Glu Glu A
260 & Asn Thr Glu Gly Thr 265 & \[
\begin{aligned}
& \text { Ser } \\
& 270
\end{aligned}
\] \\
\hline Leu Thr Gln Gln G & Glu Ser Leu Ser Arg T 275 & Thr Ile Pro Pro Asp 280 & \[
\begin{aligned}
& \text { Lys } \\
& 285
\end{aligned}
\] \\
\hline Thr Val Ile Glu & \[
\begin{aligned}
& \text { Tyr Glu Tyr Asp Val Ar } \\
& 290
\end{aligned}
\] & Arg Thr Thr Asp Ile 295 & \[
\begin{aligned}
& \text { Cys } \\
& 300
\end{aligned}
\] \\
\hline Ala Gly Pro Glu G & \[
\begin{aligned}
& \text { Glu Gln Glu Leu Ser } \\
& 305
\end{aligned}
\] & Leu Gln Glu Glu Val 310 & \[
\begin{aligned}
& \text { Ser } \\
& 315
\end{aligned}
\] \\
\hline Thr Gln Gly Thr Le & Leu Leu Glu Ser Gln Al 320 & Ala Ala Leu Ala Val 325 & \[
\begin{aligned}
& \text { Leu } \\
& 330
\end{aligned}
\] \\
\hline Gly Pro Gln Thr Led & \[
\begin{aligned}
& \text { Leu Gln Tyr Ser Tyr Th } \\
& 335
\end{aligned}
\] & Thr Pro Gln Leu Gln 340 & \[
\begin{aligned}
& \text { Asp } \\
& 345
\end{aligned}
\] \\
\hline Leu Asp Pro Leu A & Ala Gln Glu His Thr A 350 & \[
\begin{aligned}
& \text { Asp Ser Glu Glu Gly } \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pro } \\
& 360
\end{aligned}
\] \\
\hline Glu Glu Glu Pro Ser & Ser Thr Thr Leu Val As 365 & Asp Trp Asp Pro Gln 370 & \[
\begin{aligned}
& \mathrm{Thr} \\
& 375
\end{aligned}
\] \\
\hline Gly Arg Leu Cys I & \[
\begin{aligned}
& \text { Ile Pro Ser Leu Ser St } \\
& 380
\end{aligned}
\] & Ser Phe Asp Gln Asp 385 & \[
\begin{aligned}
& \text { Ser } \\
& 390
\end{aligned}
\] \\
\hline Glu Gly Cys Glu Pror & \[
\begin{aligned}
& \text { Pro Ser Glu Gly Asp Gl } \\
& 395
\end{aligned}
\] & Gly Leu Gly Glu Glu 400 & \[
\begin{aligned}
& \text { Gly } \\
& 405
\end{aligned}
\] \\
\hline Leu Leu Ser Arg Leu & Leu Tyr Glu Glu Pro Al & Ala Pro Asp Arg Pro 415 & \[
\begin{aligned}
& \text { Pro } \\
& 420
\end{aligned}
\] \\
\hline Gly Glu Asn Glu Th & Thr Tyr Leu Met Gln 425 & Phe Met Glu Glu Trp 430 & \[
\begin{aligned}
& \text { Gly } \\
& 435
\end{aligned}
\] \\
\hline Leu Tyr Val Gln Met & Met Glu Asn 440 & & \\
\hline \[
\begin{aligned}
& <210>77 \\
& <211>1636 \\
& <212>\text { DNA }
\end{aligned}
\] & & & \\
\hline
\end{tabular}
```

<213> Homo Sapien
<400> 77
gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50
gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100
ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150
tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200
agctgaagga ccacaacgcc accagcatcc tgcagcagct gccgctgctc 250
agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300
ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350
acatcctcca gctgcaggtg aagccctcgg ccaatgacca ggagctgcta 400
gtcaagatcc ccctggacat ggtggctgga ttcaacacgc coctggtcaa 450
gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500
tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550
accagccatg ggagcctgcg catccaactg ctgtataagc tctccttcct 600
ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650
ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700
ggcatgtatg cagacctcct gcagctggtg aaggtgccca tttccctcag 750
cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca }80
ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg }85
accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900
caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950
tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000
cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050
aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100
aggacactcc cgagtttttt atagaccaag gccatgccaa ggtggcccaa 1150
ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200
caccctgggc atcgaagcca gctcggaagc tcagttttac accaaaggtg 1250
accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300
atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350
cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400

```
```

gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaggcagct 1450
gagtcctcac tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500
gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550
ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600
cctctctgca atcaataaac acttgcctgt gaaaaa 1636
<210> 78
<211> 484
<212> PRT
<213> Homo Sapien
<400> 78
Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala
Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile
20 25 30
Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys
Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser
Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser
65 70 75
Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile
80 85 90
Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp
95 100 105
Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe
110 115 120
Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr
125 130 135
Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro
140 145 150
Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu
155 160 165
Arg Ile Gln Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu
170 175 180
Ala Lys Gln Val Met Asn Leu Leu Val Pro Ser Leu Pro Asn Leu
185 190
1 9 5
Val Lys Asn Gln Leu Cys Pro Val Ile Glu Ala Ser Phe Asn Gly

```

```

<210> 79
<211> 1475
<212> DNA
<213> Homo Sapien
<400> 79
gagagaagtc agcctggcag agagactctg aatgaggga ttagaggtgt 50
tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100
gcttctactg agaggtctgc catggcctct cttggcctcc aacttgtggg 150
ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200
tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250
gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300
catcacccag tgtgacatct atagcaccct tctgggcetg cccgctgaca 350
tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400
gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450
atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500
ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550
ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600
tggagaggct ctttacttgg gcattatttc ttccctgttc tccctgatag 650
ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700
tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750
gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800
cagggtatgt gtgaagaacc aggggccaga gctggggggt ggctgggtct 850
gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900
actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950
ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000
attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050
gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100
agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150
ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200
ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250

```
```

gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300
cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350
actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400
tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450
gcagcctggg acatttaaaa aaata 1475
<210> 80
<211> 230
<212> PRT
<213> Homo Sapien
<400> 80
Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
1 5 10
Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp
Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly
35 40 45
Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly
50 55 60
Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala
65 70 75
Asp Ile Gln Ala Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile
80 - 85 90
Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr
Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala
110 115 120
Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro
125 130 135
Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro
140 145 150
Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr
155 160 165
Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile
Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr
185 190 195
Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg
200 205 210

```
```

 Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser
 Leu Thr Gly Tyr Val
 230
 <210> 81
<211> 1732
<212> DNA
<213> Homo Sapien
<400> 81
cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctcca 50
tctctccctc ctttccccgc gttctctttc cacctttctc ttcttcccac 100
cttagacctc cettcctgcc ctcctttcct gcccaccgct gcttcctggc 150
ccttctccga coccgctcta gcagcagacc tcctggggtc tgtgggttga 200
tctgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cctcccgact 250
ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300
gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttccccctgg 350
actcccacgc tcgagcccgc ccagacatgt tctgcctttt ccatgggaag 400
agatactccc coggcgagag ctggcacccc tacttggagc cacaaggcct 450
gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500
accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550
cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600
ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650
agatcttcag tgcccatgag ctgttcccct cccgcctgcc caaccagtgt 700
gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750
ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc }80
aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850
cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900
tgggagaaag agaggcccgg gcaccccagc ccccactggc ctcagcgccc 950
ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000
actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050
cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100
tcggcccctt gccctgcatc ctatgcacct gtgaggatgg ccgccaggac 1150

```
```

 tgccagcgtg tgacctgtcc caccgagtac ccctgccgtc accccgagaa 1200
 agtggctggg aagtgctgca agatttgccc agaggacaaa gcagaccctg 1250
 gccacagtga gatcagttct accaggtgtc ccaaggcacc gggccgggtc 1300
 ctcgtccaca catcggtatc cccaagccca gacaacctgc gtcgctttgc 1350
 cctggaacac gaggcctcgg acttggtgga gatctacctc tggaagctgg 1400
 taaaagatga ggaaactgag gctcagagag gtgaagtacc tggcccaagg 1450
 ccacacagcc agaatcttcc acttgactca gatcaagaaa gtcaggaagc 1500
 aagacttcca gaaagaggca cagcacttcc gactgctcgc tggcccccac 1550
 gaaggtcact ggaacgtctt cctagcccag accctggagc tgaaggtcac 1600
 ggccagtcca gacaaagtga ccaagacata acaaagacct aacagttgca 1650
 gatatgagct gtataattgt tgttattata tattaataaa taagaagttg 1700
 cattaccctc aaaaaaaaaa aaaaaaaaaa aa 1732
 <210> 82
<211> 451
<212> PRT
<213> Homo Sapien
<400> 82
Met Val Pro Glu Val Arg Val Leu Ser Ser Leu Leu Gly Leu Ala
1 5 10
Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp
20 25 30
Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser
35 40 45
Trp His Pro Tyr Leu Glu Pro Gln Gly Leu Met Tyr Cys Leu Arg
50 55 60
Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His
Cys Pro Pro Val His Cys Pro Gln Pro Val Thr Glu Pro Gln Gln
80 85 90
Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg
Ala Pro Pro Lys Ser Cys Gln His Asn Gly Thr Met Tyr Gln His
110 115 120
Gly Glu Ile Phe Ser Ala His Glu Leu Phe Pro Ser Arg Leu Pro
125 130 135

```

```

Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala
Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys
440 445 450
Thr

```
```

<210> 83

```
<210> 83
<211> 2052
<211> 2052
<212> DNA
<212> DNA
<213> Homo Sapien
<213> Homo Sapien
<400> 83
<400> 83
gacagctgtg tctcgatgga gtagactctc agaacagcgc agtttgccct 50
gacagctgtg tctcgatgga gtagactctc agaacagcgc agtttgccct 50
ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100
ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100
gttctcctct tctctctaat ccatccgtca cotctcctgt catccgtttc 150
gttctcctct tctctctaat ccatccgtca cotctcctgt catccgtttc 150
catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200
catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200
ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250
ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250
gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300
gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300
gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350
gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350
aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400
aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400
gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450
gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450
attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500
attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500
ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550
ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550
gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600
gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600
tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650
tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650
tcgggctggt tcccccggcc cacagcgaag tggaaaggtc cacaaggaca }70
tcgggctggt tcccccggcc cacagcgaag tggaaaggtc cacaaggaca }70
ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750
ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750
atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800
atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800
tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850
tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850
aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900
aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900
tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950
tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950
ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000
ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000
aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050
```

aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050

```
```

tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100
aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150
gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200
aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250
gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300
cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350
cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400
ataggggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450
aaatgaccag tcccttattt ataccctgac atgtcggttt gaaggcttat 1500
tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550
atagtcatct gcccagtcac ccaggaatca gagaaagagg cotcttggca 1600
aagggcctct gcaatcccag agacaagcaa cagtgagtcc tcctcacagg 1650
caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700
acattcttct ttagggatat taaggtctct ctcccagatc caaagtcccg 1750
cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800
atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850
cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900
ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950
tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000
acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050
aa 2052
<210> 84
<211> 500
<212> PRT
<213> Homo Sapien
<400> 84
Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Leu Lys Leu Gly
1 5 10 15
Ser Gly Gln Trp Gln Val Phe Gly Pro Asp Lys Pro Val Gln Ala
20 25
30
Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys
35 40
4 5
Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gln Phe

```



```

<400> 86
Met Leu Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala
1 5 10 15
Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr
20 25 30
Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr
35 40 45
Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr
50 55 60
Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala
6 5 ~ 7 0 ~ 7 5 ~
Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg
80 85 90
Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser
95 100 105
Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg
110 115 120
Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu
Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile
140 145 150
Pro Gly Thr Leu Glu Ser Gly Cys Pro Gln Asn Leu Thr Cys Ser
155 160 165
Val Pro Trp Ala Cys Glu Gln Gly Thr Pro Pro Met Ile Ser Trp
170 175 180
Ile Gly Thr Ser Val Ser Pro Leu Asp Pro Ser Thr Thr Arg Ser
185 190 195
Ser Val Leu Thr Leu Ile Pro Gln Pro Gln Asp His Gly Thr Ser
200 205 210
Leu Thr Cys Gln Val Thr Phe Pro Gly Ala Ser Val Thr Thr Asn
215 220 225
Lys Thr Val His Leu Asn Val Ser Tyr Pro Pro Gln Asn Leu Thr
230 235 240
Met Thr Val Phe Gln Gly Asp Gly Thr Val Ser Thr Val Leu Gly
245 250 255
Asn Gly Ser Ser Leu Ser Leu Pro Glu Gly Gln Ser Leu Arg Leu
260 265 270
Val Cys Ala Val Asp Ala Val Asp Ser Asn Pro Pro Ala Arg Leu

```

```

ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450
tgggccaact acaacacctt tggatctgca gaggcggcca cgagcgatga 500
ctacaagaac cctggctact acgacatcca ggccaaggac ctgggcatct 550
ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600
ctgaggtacc gcacggacac tggcttcctc cagacactgg gacataatct 650
gtttggcatc taccagaaat atccagtgaa atatggagaa ggaaagtgtt 700
ggactgacaa cggcccggtg atccctgtgg tctatgattt tggcgacgcc 750
cagaaaacag catcttatta ctcaccctat ggccagcggg aattcactgc 800
gggatttgtt cagttcaggg tatttaataa cgagagagca gccaacgcct }85
tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900
ggtggaggag gatactttcc agaggccagt ccccagcagt gtggagattt 950
ttctggtttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000
gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050
tgtgggaggg aacccagacc tctcctccca accatgagat cccaaggatg 1100
gagaacaact tacccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150
taaatcatat tgactcaaga aaaaaa 1176
<210> 88
<211> 313
<212> PRT
<213> Homo Sapien
<400> 88
Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg
1 5 10 15
Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr
20 25 30
Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys
35 40 45
Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr
Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly
65 70 75
Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met
80 85 90

```
```

 Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly
 95 100 105
 Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr
 110 115 120
 Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys
 125 130
 135
 Asn Pro Gly Tyr Tyr Asp Ile Gln Ala Lys Asp Leu Gly Ile Trp
 140 145 150
 His Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser
 155 160 165
 Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly
 170 175 180
 His Asn Leu Phe Gly Ile Tyr Gln Lys Tyr Pro Val Lys Tyr Gly
 185 190 195
 Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val
 200 205 210
 Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro
 215 220 225
 Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val
 230 235 240
 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg
 245 250 255
 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly Gly
 260 265 270
 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly
 275 280
 285
 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser
Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg
<210> 89
<211> 759
<212> DNA
<213> Homo Sapien
<400> 89
ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50
tccagcctca gagaccgccg cccttgtccc cgagggccat gggccgggtc 100
tcagggcttg tgccctctcg cttcctgacg ctcctggcgc atctggtggt 150

```
```

 cgtcatcacc ttattctggt cccgggacag caacatacag gcctgcctgc 200
 ctctcacgtt cacccccgag gagtatgaca agcaggacat tcagctggtg 250
 gccgcgctct ctgtcaccct gggcctcttt gcagtggagc tggccggttt 300
 cctctcagga gtctccatgt tcaacagcac ccagagcctc atctccattg 350
 gggctcactg tagtgcatcc gtggccctgt ccttcttcat attcgagcgt 400
 tgggagtgca ctacgtattg gtacattttt gtcttctgca gtgcccttcc 450
 agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500
 aacccttctg attaccttca tgacgggaac ctaaggacga agcctacagg 550
 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600
 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650
 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700
 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750
 aaaaaaaaa 759
 <210> 90
<211> 140
<212> PRT
<213> Homo Sapien
<400> 90
Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu
1 5 10
Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp
20 25 30
Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu
35 40 45
Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
50 55 60
Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val
65 70 . 75
Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His
80 85 90
Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp
95 100 105
Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu
110 115 120
Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu

```
```

Lys Lys Lys Pro Phe
140
<210> 91
<211> 1871
<212> DNA
<213> Homo Sapien
<400> 91
ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50
gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100
tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150
cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200
gcggggccac atctcaccta agtcccgccc catggccaat tccactctcc 250
tagggctgct ggccccgcct ggggaggctt ggg.gcattct tgggcagccc 300
cccaaccgcc cgaaccacag ccccccaccc tcagccaagg tgaagaaaat 350
ctttggctgg ggcgacttct actccaacat caagacggtg gccetgaacc 400
tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450
cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500
gccccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550
aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600
gaacggggcc gccggacctc gctttgcacc cacgacccag ccaagatctg 650
ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccet 700
tcaaagtcgt ctgtgtctac atcgccttct acagcacgga ctatcggctg 750
gtccagaagg tgtgcccaga ttacaactac catagtgata ccccctacta }80
cccatctggg tgacccgggg caggccacag aggccaggcc agggctggaa }85
ggacaggcct gcccatgcag gagaccatct ggacaccggg cagggaaggg 900
gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950
gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000
aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050
ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100
ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150
gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200

```
```

 gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250
 atggatggct gagagggctt cctaggagcc agtcagcagg gtggggtggg 1300
 gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccocttgtc 1350
 gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400
 gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450
 ttccctcttc tgccagtact ccccctgtac cacccattgc tgatggcaca 1500
 cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550
 acagcccatc cgcgtgctgt gtgtccctct tccaccccaa cccctgctgg 1600
 ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650
 tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700
 gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750
 tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800
 aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850
 aataaagctt gccccggggc a 1871
 <210> 92
<211> 252
<212> PRT
<213> Homo Sapien
<400> 92
Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser
1 5 10
Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser
Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg
35 40 45
Val Pro Arg Lys Arg Gly His Ile Ser Pro Lys Ser Arg Pro Met
50 55 60
Ala Asn Ser Thr Leu Leu Gly Leu Leu Ala Pro Pro Gly Glu Ala
65 70 75
Trp Gly Ile Leu Gly Gln Pro Pro Asn Arg Pro Asn His Ser Pro
80 85 90
Pro Pro Ser Ala Lys Val Lys Lys Ile Phe Gly Trp Gly Asp Phe
95 100 105
Tyr Ser Asn Ile Lys Thr Val Ala Leu Asn Leu Leu Val Thr Gly
110 115 120

```

```

 tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg 650
 tcagcattta taatcctggt gctcatgggc acctgggcat tcttagctgc 700
 gggaggcagc tgccgaagcc tgaaactctg cctgctctgc caagacaaga 750
 actttcttct ttacaaccag cgctccagat aacctcaggg aaccagcact 800
 tcccaaaccg cagactacat ctttagagga agcacaactg tgcctttttc 850
 tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900
 ta 902
 <210> 94
<211> 257
<212> PRT
<213> Homo Sapien
<400> 94
Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly
1 5 10 15
Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu
20 25 30
Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser
35 40 45
Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile
50 55 60
Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly
65 70 75
Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr
80 85 90
Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn
95 100 105
Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser
110 115 120
Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn
125 130
135
Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly
140 145 150
Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val
155 160 165
Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly
170 175 180

```

```

 gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900
 cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950
 tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000
 aaaaaaaaaa aamaaaaaaa aaaaaacaaa aamaaamaaa aaaaaaaaaa 1050
 aaaaaaaaaa aaaaaaaaaa aaa 1073
<210> 96
<211> 209
<212> PRT
<213> Homo Sapien
<400> 96
Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg
1 5 10 15
Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys
20 25 30
Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn
35 40%45
Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu
50 55 60
Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met
65 70 75
Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn
80 85 90
Val Gln Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr
95 100 105
Gln Leu Gly Ala Gln Gly Thr Ile Leu Ser Ser Glu Glu Leu Pro
110 115 120
Gln Ile Phe Thr Ser Leu Ile Ile His Ser Leu Phe Pro Gly Gly
125 130 135
Ile Leu Pro Thr Ser Gln Ala Gly Ala Asn Pro Asp Val Gln Asp
140 145 150
Gly Ser Leu Pro Ala Gly Gly Ala Gly Val Asn Pro Ala Thr Gln
155 160 165
Gly Thr Pro Ala Gly Arg Leu Pro Thr Pro Ser Gly Thr Asp Asp
170 175 180
Asp Phe Ala Val Thr Thr Pro Ala Gly Ile Gln Arg Ser Thr His
185 190 195
Ala Ile Glu Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Gln

```
```

<210> 97
<211> 2848
<212> DNA
<213> Homo Sapien
<400> 97
gctcaagtgc cctgccttgc cccacccagc ccagcctggc cagagccccc 50
tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100
ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150
gctttgtgtc tccgtccccc aggctctccc caaggcccag cotgcagagc 200
tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250
accaagttgc cgctgccccg tgagggggct gaaggccaga tcgtgctgtc 300
aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350
ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400
taccagctac aggtcaccct ggagatgcag gatggacatg tcttgtgggg 450
tccacagcct gtgcttgtgc acgtgaagga tgagaatgac caggtgcccc 500
atttctctca agccatctac agagctcggc tgagccgggg taccaggcct 550
ggcatcccct tcctcttcct tgaggcttca gaccgggatg agccaggcac 600
agccaactcg gatcttcgat tccacatcct gagccaggct ccagcccagc 650
cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700
agccccaagg ggagcaccag ccttgaccac gccctggaga ggacctacca 750
gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800
ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850
gagcctatcc acctggcaga gaatctcaaa gtcctatacc cgcaccacat 900
ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950
atcccccggg accctttgaa gtgaatgcag agggaaacct ctacgtgacc 1000
agagagctgg acagagaagc ccaggctgag tacctgctcc aggtgcgggc 1050
tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100
tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150
acagtcagca tccctgagct cagtccacca ggtactgaag tgactagact }120
gtcagcagag gatgcagatg cccccggctc ccccaattcc cacgttgtgt 1250

```

```

 gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700
 ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatgggagt 2750
 gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800
 ctgggcccta tgggaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaag 2848
 <210> 98
<211> 807
<212> PRT
<213> Homo Sapien
<400> 98
Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gln
1 5 10
Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro
Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr Leu Thr Lys Leu Pro
35 40
4 5
Leu Pro Arg Glu Gly Ala Glu Gly Gln Ile Val Leu Ser Gly Asp
Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met. Asp Pro Asp Ser
65 70 75
Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg Glu Glu Gln Ala
80 85 90
Glu Tyr Gln Leu Gln Val Thr Leu Glu Met Gln Asp Gly His Val
95 100 105
Leu Trp Gly Pro Gln Pro Val Leu Val His Val Lys Asp Glu Asn
110 115 120
Asp Gln Val Pro His Phe Ser Gln Ala Ile Tyr Arg Ala Arg Leu
125 130 135
Ser Arg Gly Thr Arg Pro Gly Ile Pro Phe Leu Phe Leu Glu Ala
140 145 150
Ser Asp Arg Asp Glu Pro Gly Thr Ala Asn Ser Asp Leu Arg Phe
155 160 165
His Ile Leu Ser Gln Ala Pro Ala Gln Pro Ser Pro Asp Met Phe
170 175 180
Gln Leu Glu Pro Arg Leu Gly Ala Leu Ala Leu Ser Pro Lys Gly
185 190 195
Ser Thr Ser Leu Asp His Ala Leu Glu Arg Thr Tyr Gln Leu Leu
Val Gln Val Lys Asp Met Gly Asp Gln Ala Ser Gly His Gln Ala

```



Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val 800805
<210> 99
<211> 2436
<212> DNA
<213> Homo Sapien
<400> 99
ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50
agctgcccac gcctgagtcc aagattcttc ccaggaacac aaacgtagga 100
gacccacgct cotggaagca ccagccttta tctcttcacc ttcaagtccc 150
ctttctcaag aatcctctgt tctttgccet ctaaagtctt ggtacatcta 200
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgcag 250
aaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300
aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350
tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400
agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450
ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500
gcacagccac caactctgag ttcagcacag cgtccagtgg gatcagcata 550
gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600
caactctgag tccagcacac cctccagtgg ggccagcaca gtcaccaact 650
ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700
tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750
cacactctcc agtggggcea gcacagccac caactctgac tccagcacaa 800
cctccagtgg ggctagcaca gccaccaact ctgagtccag cacaacctcc 850
agtggggcca gcacagccac caactctgag tccagcacag tgtccagtag 900
ggccagcact gccaccaact ctgagtccag cacaacctcc agtggggcca 950
gcacagccac caactctgag tccagaacga cotccaatgg ggctggcaca 1000
gccaccaact ctgagtccag cacgacctcc agtggggcea gcacagccac 1050
caactctgac tccagcacag tgtccagtgg ggccagcact gccaccaact 1100
ctgagtccag cacgacctcc agtggggcca gcacagccac caactctgag 1150
```

tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200
cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250
tgtccagtgg gatcagcaca gtcaccaatt ctgagtccag cacaccctcc 1300
agtggggcca acacagccac caactctgag tccagtacga cctccagtgg 1350
ggccaacaca gccaccaact ctgagtccag cacagtgtcc agtggggcca 1400
gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450
gccaccaact ctgagtccag cacaacctcc agtggggcta gcacagccac 1500
caactctgac tccagcacaa cctccagtga ggccagcaca gccaccaact }155
ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600
tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650
tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700
cttcccatag tgcatctact gcagtgagtg aggcaaagcc tggtgggtcc 1750
ctggtgccgt gggaaatctt cctcatcacc ctggtctcgg ttgtggcggc 1800
cgtggggctc tttgctgggc tcttcttctg tgtgagaaac agcctgtccc 1850
tgagaaacac ctttaacaca gctgtctacc accctcatgg cctcaaccat 1900
ggccttggtc caggccctgg agggaatcat ggagcccccc acaggcccag 1950
gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000
agatgagcgg gaggaacagc gggccctgag cagccccgga agcaagtgcc 2050
gcattcttca ggaaggaaga gacctgggca cccaagacct ggtttccttt 2100
cattcatccc aggagacccc tcccagcttt gtttgagatc ctgaaaatct 2150
tgaagaaggt attcctcacc tttcttgcct ttaccagaca ctggaaagag 2200
aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250
acacgacaaa gagaagctgt gcttgccccg gggtgggtat ctagctctga 2300
gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350
tcaaaatctc cacagtaaaa tccaaagacc tcaaaaaaaa aaaaaaaaaa 2400
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 2436
<210> 100
<211> 596
<212> PRT
<213> Homo Sapien

```
```

<400> 100
Met Lys Met Gln Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu
Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser
20 25
Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala
35 40 45
Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala
50 55 60
Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val
65 70 75
Thr Asn Ser Glu Phe His Thr Thr Ser Ser Gly Ile Ser Thr Ala
80 85 90
Thr Asn Ser Glu Phe Ser Thr Ala Ser Ser Gly Ile Ser Ile Ala
95 100 105
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
110 115 120
Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Ser Thr Val
125 130 135
Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Ala Ser Thr Ala
140 145 150
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala
155 160 165
Thr Asn Ser Glu Ser Ser Thr Leu Ser Ser Gly Ala Ser Thr Ala
170 175 180
Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
185 190 195
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
200 205 210
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala
215 220 225
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
230 235 240
Thr Asn Ser Glu Ser Arg Thr Thr Ser Asn Gly Ala Gly Thr Ala
245 250 255
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
260 265 270
Thr Asn Ser Asp Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala
275 280
285

```

```

Arg Trp Ser Pro Asn Trp Phe Trp Arg Arg Pro Val Ser Ser Ile
575 580 585
Ala Met Glu Met Ser Gly Arg Asn Ser Gly Pro
590 595
<210> 101
<211> 1728
<212> DNA
<213> Homo Sapien
<400> 101
ggccggacgc ctccgcgtta cgggatgaat taacggcggg ttccgcacgg 50
aggttgtgac ccctacggag ccccagcttg cccacgcacc ccactcggcg 100
tcgcgcggcg tgccctgctt gtcacaggtg ggaggctgga actatcaggc 150
tgaaaaacag agtgggtact ctcttctggg aagctggcaa caaatggatg 200
atgtgatata tgcattccag gggaagggaa attgtggtgc ttctgaaccc 250
atggtcaatt aacgaggcag tttctagcta ctgcacgtac ttcataaagc 300
aggactctaa aagctttgga atcatggtgt catggaaagg gatttacttt 350
atactgactc tgttttgggg aagctttttt ggaagcattt tcatgctgag 400
tcccttttta cctttgatgt ttgtaaaccc atcttggtat cgctggatca 450
acaaccgcet tgtggcaaca tggctcaccc tacctgtggc attattggag 500
accatgtttg gtgtaaaagt gattataact ggggatgcat ttgttcctgg 550
agaaagaagt gtcattatca tgaaccatcg gacaagaatg gactggatgt 600
tcctgtggaa ttgcctgatg cgatatagct acctcagatt ggagaaaatt 650
tgcctcaaag cgagtctcaa aggtgttcct ggatttggtt gggccatgca 700
ggctgctgcc tatatcttca ttcataggaa atggaaggat gacaagagcc 750
atttcgaaga catgattgat tacttttgtg atattcacga accacttcaa }80
ctcctcatat tcccagaagg gactgatctc acagaaaaca gcaagtctcg }85
aagtaatgca tttgctgaaa aaaatggact tcagaaatat gaatatgttt 900
tacatccaag aactacaggc tttacttttg tggtagaccg tctaagagaa 950
ggtaagaacc ttgatgctgt ccatgatatc actgtggcgt atcctcacaa 1000
cattcctcaa tcagagaagc acctcctcca aggagacttt cccagggaaa 1050
tccactttca cgtccaccgg tatccaatag acaccctccc cacatccaag 1100
gaggaccttc aactctggtg ccacaaacgg tgggaagaga aagaagagag 1150

```
```

 gctgcgttcc ttctatcaag gggagaagaa tttttatttt accggacaga 1200
 gtgtcattcc accttgcaag tctgaactca gggtccttgt ggtcaaattg 1250
 ctctctatac tgtattggac cctgttcagc cctgcaatgt gcctactcat 1300
 atatttgtac agtcttgtta agtggtattt tataatcacc attgtaatct 1350
 ttgtgctgca agagagaata tttggtggac tggagatcat agaacttgca 1400
 tgttaccgac ttttacacaa acagccacat ttaaattcaa agaaaaatga 1450
 gtaagattat aaggtttgcc atgtgaaaac ctagagcata ttttggaaat 1500
 gttctaaacc tttctaagct cagatgcatt tttgcatgac tatgtcgaat 1550
 atttcttact gccatcatta tttgttaaag atattttgca cttaattttg 1600
 tgggaaaaat attgctacaa ttttttttaa tctctgaatg taatttcgat 1650
 actgtgtaca tagcagggag tgatcggggt gaaataactt gggccagaat 1700
 attattaaac aatcatcagg cttttaaa 1728
 <210> 102
<211> 414
<212> PRT
<213> Homo Sapien
<400> 102
Met His Ser Arg Gly Arg Glu Ile Val Val Leu Leu Asn Pro Trp
1 5 10
Ser Ile Asn Glu Ala Val Ser Ser Tyr Cys Thr Tyr Phe Ile Lys
Gln Asp Ser Lys Ser Phe Gly Ile Met Val Ser Trp Lys Gly Ile
35 40 45
Tyr Phe Ile Leu Thr Leu Phe Trp Gly Ser Phe Phe Gly Ser Ile
50 55 60
Phe Met Leu Ser Pro Phe Leu Pro Leu Met Phe Val Asn Pro Ser
65 70 75
Trp Tyr Arg Trp Ile Asn Asn Arg Leu Val Ala Thr Trp Leu Thr
80 85 90
Leu Pro Val Ala Leu Leu Glu Thr Met Phe Gly Val Lys Val Ile
95 100 105
Ile Thr Gly Asp Ala Phe Val Pro Gly Glu Arg Ser Val Ile Ile
110 115 120
Met Asn His Arg Thr Arg Met Asp Trp Met Phe Leu Trp Asn Cys
125 130
135

```

```

<210> 103
<211> 2403
<212> DNA
<213> Homo Sapien
<400> 103
cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50
acagctggcc tgacctccaa atcatccatc cacccctgct gtcatctgtt 100
ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150
tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200
gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250
tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300
caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350
gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400
gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450
ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500
aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550
atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600
ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac }65
aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700
gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750
ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800
taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850
ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900
tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950
gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcagtggag 1000
gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050
gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100
agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150
agacattact gggaggtgga cgtgggacaa aatgtagggt ggtatgtggg 1200
agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250
ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300

```
```

 acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacg 1350
 agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400
 caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450
 ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500
 tcccatattc atatgtccag tgtcctgggg atgagacaga gaagaccctg 1550
 cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600
 ccgacaggtg gccccagctt cctctccgga gcctgcgcac agagagtcac 1650
 gccccccact ctcctttagg gagctgaggt tcttctgccc tgagccctgc 1700
 agcagcggca gtcacagctt ccagatgagg ggggattggc ctgaccctgt 1750
 gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800
 ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850
 cacaacctcc caggctcctc atttgctagt cacggacagt gattcctgcc 1900
 tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950
 tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000
 accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050
 aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100
 ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150
 gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200
 gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250
 caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300
 ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350
 gtaattcagc acattaataa agtaaaaaag aaaaccataa aaaaaaaaaa 2400
 aaa 2403
 <210> 104
<211> 466
<212> PRT
<213> Homo Sapien
<400> 104
Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val
1 5
5 10 15
Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala

```

Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu
45
Thr Ser Ala Glu Ala Met Glu Val Arg Phe Phe Arg Asn Gln Phe 505560

His Ala Val Val His Leu Tyr Arg Asp Gly Glu Asp Trp Glu Ser \(\begin{array}{rr}75 & 70\end{array}\)

Lys Gln Met Pro Gln Tyr Arg Gly Arg Thr Glu Phe Val Lys Asp 808590

Ser Ile Ala Gly Gly Arg Val Ser Leu Arg Leu Lys Asn Ile Thr
95

Pro Ser Asp Ile Gly Leu Tyr Gly Cys Trp Phe Ser Ser Gln Ile 110115120

Tyr Asp Glu Glu Ala Thr Trp Glu Leu Arg Val Ala Ala Leu Gly 125130135

Ser Leu Pro Leu Ile Ser Ile Val Gly Tyr Val Asp Gly Gly Ile
140
145

Gln Leu Leu Cys Leu Ser Ser Gly Trp Phe Pro Gln Pro Thr Ala 155160165

Lys \(\operatorname{Trp}\) Lys Gly Pro Gln Gly Gln Asp \(\begin{aligned} & \text { Leu Ser Ser Asp Ser Arg } \\ & 170 \\ & 175\end{aligned} \quad 180\)

Ala Asn Ala Asp Gly Tyr Ser Leu Tyr Asp Val Glu Ile Ser Ile 185190195

Ile Val Gln Glu Asn Ala Gly Ser Ile Leu Cys Ser Ile His Leu 200205210

Ala Glu Gln Ser His Glu Val Glu Ser Lys Val Leu Ile Gly Glu

Thr Phe Phe Gln Pro Ser Pro Trp Arg Leu Ala Ser Ile Leu Leu 230235240

Gly Leu Leu Cys Gly Ala Leu Cys Gly Val Val Met Gly Met Ile 245250255

Ile Val Phe Phe Lys Ser Lys Gly Lys Ile Gln Ala Glu Leu Asp 260265270

Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys 275280285

His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys 290

295
300

Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro

<210> 105
<211> 2103
\(<212>\) DNA
<213> Homo Sapien
<400> 105
    ccttcacagg actcttcatt gctggttggc aatgatgtat cggccagatg 50
    tggtgagggc taggaaaaga gtttgttggg aaccctgggt tatcggcctc 100
    gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150
    tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200
    tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250
    aacaatttta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300
    attttataạa tctccattaa gggaagaatt tgtcaagtct caggttatca 350
    agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400
    agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450

```

 tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950
 atgataaatg tgaagaagat tctgtttttt tgtgacctat aataattata 2000
 caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050
 ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100
 cca 2103
 <210> 106
<211> 423
<212> PRT
<213> Homo Sapien
<400> 106
Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys
1 5 10 15
Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile
20 25 30
Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr
35 40 45
Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr
50 55 60
Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn
65 70 75
Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala
80 85 90
Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val
95 100 . 105
Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu
110 115 120
Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp
125 130 135
Lys Ile Val.Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val
140 145 150
Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile
155 160 165
Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr
170 175 180
Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly
185 190 195
Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln

```

```

cccaggcggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150
tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200
gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250
acgccctcaa tctgctcttt tggttaatgt ccatcagtgt gttggcagtt 300
tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350
aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400
cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450
tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500
aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550
atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600
aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650
tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 700
tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750
tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800
cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850
gaggaaccaa acaactgcag gtgctgaggt ttctgggaat ctccattggg 900
gtgacacaaa tcctggccat gattctcacc attactctgc tctgggctct 950
gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000
atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050
agcctgtcaa gaatctttga acacacatcc atggcaaaca gctttaatac 1100
acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150
caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200
cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250
tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300
accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350
acccactgtg tagcctgtgt atgactttta ctgaacacag ttatgttttg 1400
aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450
atggtgggac tggagccata gtaaaggttg atttacttct accaactagt 1500
atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550

```
```

 acttttatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600
 cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650
 ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700
 tgatcaggga ttttttgtat ataagtctgt gttaaatctg tataattcag 1750
 tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800
ttgtcctgta tagcatcatt atttttagcc tttcctgtta ataaagcttt 1850
actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900
taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950
agaatgtagt ctggtcttta ggaagtatta ataagaaaat ttgcacataa 2000
cttagttgat tcagaaagga cttgtatgct gtttttctcc caaatgaaga 2050
ctctttttga cactaaacac tttttaaaaa gcttatcttt gccttctcca 2100
aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150
ttctttttct ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200
tttagagatt ctttgtttta tttcactgat taatatactg tggcaaatta 2250
cacagattat taaatttttt tacaagagta tagtatattt atttgaaatg 2300
ggaaaagtgc attttactgt attttgtgta ttttgtttat ttctcagaat 2350
atggaaagaa aattaaaatg tgtcaataaa tattttctag agagtaa 2397
<210> 108
<211> 305
<212> PRT
<213> Homo Sapien
<400> 108
Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr
1 5 10, 15
Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala
20 25 30
Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu
35 40 45
Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe
Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile
65 70 75
Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu
80


```
agtattaaga ggattttcca gtgtttctgg cagttggtcc agaaggatgc 200
ctccattcct gcttctcacc tgcctcttca tcacaggcac ctccgtgtca 250
cccgtggccc tagatccttg ttctgcttac atcagcctga atgagccctg 300
gaggaacact gaccaccagt tggatgagtc tcaaggtcct cctctatgtg 350
acaaccatgt gaatggggag tggtaccact tcacgggcat ggcgggagat 400
gccatgccta ccttctgcat accagaaac cactgtggaa cccacgcacc 450
tgtctggctc aatggcagcc accccctaga aggcgacggc attgtgcaac 500
gccaggcttg tgccagcttc aatgggaact gctgtctctg gaacaccacg 550
gtggaagtca aggcttgccc tggaggctac tatgtgtatc gtctgaccaa 600
gcccagcgtc tgcttccacg tctactgtgg tcatttttat gacatctgcg 650
acgaggactg ccatggcagc tgctcagata ccagcgagtg cacatgcgct 700
ccaggaactg tgctaggccc tgacaggcag acatgctttg atgaaaatga 750
atgtgagcaa aacaacggtg gctgcagtga gatctgtgtg aacctcaaaa 800
actcctaccg ctgtgagtgt ggggttggcc gtgtgctaag aagtgatggc 850
aagacttgtg aagacgttga aggatgccac aataacaatg gtggctgcag 900
ccactcttgc cttggatctg agaaaggcta ccagtgtgaa tgtccccggg 950
gcctggtgct gtctgaggat aaccacactt gccaagtccc tgtgttgtgc 1000
aaatcaaatg ccattgaagt gaacatcccc agggagctgg ttggtggcct 1050
ggagctcttc ctgaccaaca cctcctgccg aggagtgtcc aacggcaccc 1100
atgtcaacat cctcttctct ctcaagacat gtggtacagt ggtcgatgtg 1150
gtgaatgaca agattgtggc cagcaacctc gtgacaggtc tacccaagca 1200
gaccccgggg agcagcgggg acttcatcat ccgaaccagc aagctgctga 1250
tcccggtgac ctgcgagttt ccacgcctgt acaccatttc tgaaggatac 1300
gttcccaacc ttcgaaactc cccactggaa atcatgagcc gaaatcatgg 1350
gatcttccca ttcactctgg agatcttcaa ggacaatgag tttgaagagc 1400
cttaccggga agctctgccc accctcaagc ttcgtgactc cctctacttt 1450
ggcattgagc ccgtggtgca cgtgagcggc ttggaaagct tggtggagag 1500
ctgctttgcc acccccacct ccaagatcga cgaggtcctg aaatactacc 1550
tcatccggga tggctgtgtt tcagatgact cggtaaagca gtacacatcc 1600
```

```
cgggatcacc tagcaaagca cttccaggtc cotgtcttca agtttgtggg 1650
caaagaccac aaggaagtgt ttctgcactg ccgggttctt gtctgtggag 1700
tgttggacga gcgttcccgc tgtgcccagg gttgccaccg gcgaatgcgt 1750
cgtggggcag gaggagagga ctcagccggt ctacagggcc agacgctaac 1800
aggcggcccg atccgcatcg actgggagga ctagttcgta gccatacctc 1850
gagtccctgc attggacggc tctgctcttt ggagcttctc cccccaccgc 1900
cctctaagaa catctgccaa cagctgggtt cagacttcac actgtgagtt 1950
cagactccca gcaccaactc actctgattc tggtccattc agtgggcaca 2000
ggtcacagca ctgctgaaca atgtggcctg ggtggggttt catctttcta 2050
gggttgaaaa ctaaactgtc cacccagaaa gacactcacc ccatttccct 2100
catttctttc ctacacttaa atacctcgtg tatggtgcaa tcagaccaca 2150
aaatcagaag ctgggtataa tatttcaagt tacaaaccct agaaaaatta 2200
aacagttact gaaattatga cttaaatacc caatgactcc ttaaatatgt 2250
aaattatagt tataccttga aatttcaatt caaatgcaga ctaattatag 2300
ggaatttgga agtgtatcaa taaaacagta tataatttt 2339
<210> 110
<211> 545
<212> PRT
<213> Homo Sapien
<400> 110
    Met Pro Pro Phe Leu Leu Leu Thr Cys Leu Phe Ile Thr Gly Thr
Ser Val Ser Pro Val Ala Leu Asp Pro Cys Ser Ala Tyr Ile Ser
                                    20 25 30
Leu Asn Glu Pro Trp Arg Asn Thr Asp His Gln Leu Asp Glu Ser
                        35 40 45
Gln Gly Pro Pro Leu Cys Asp Asn His Val Asn Gly Glu Trp Tyr
His Phe Thr Gly Met Ala Gly Asp Ala Met Pro Thr Phe Cys Ile
        65 70 75
Pro Glu Asn His Cys Gly Thr His Ala Pro Val Trp Leu Asn Gly
    80 85 90
Ser His Pro Leu Glu Gly Asp Gly Ile Val Gln Arg Gln Ala Cys
        95 100 105
```



```
        Leu Glu Ile Phe Lys Asp Asn Glu Phe Glu Glu Pro Tyr Arg Glu
        395 400 405
        Ala Leu Pro Thr Leu Lys Leu Arg Asp Ser Leu Tyr Phe Gly Ile
        410 415 420
        Glu Pro Val Val His Val Ser Gly Leu Glu Ser Leu Val Glu Ser
        425 430 435
        Cys Phe Ala Thr Pro Thr Ser Lys Ile Asp Glu Val Leu Lys Tyr
        440 445 450
        Tyr Leu Ile Arg Asp Gly Cys Val Ser Asp Asp Ser Val Lys Gln
        Tyr Thr Ser Arg Asp His Leu Ala Lys His Phe Gln Val Pro Val
        470 475 480
        Phe Lys Phe Val Gly Lys Asp His Lys Glu Val Phe Leu His Cys
        4 8 5 4 9 0
        495
    Arg Val Leu Val Cys Gly Val Leu Asp Glu Arg Ser Arg Cys Ala
        500 505 510
        Gln Gly Cys His Arg Arg Met Arg Arg Gly Ala Gly Gly Glu Asp
        515 520 525
        Ser Ala Gly Leu Gln Gly Gln Thr Leu Thr Gly Gly Pro Ile Arg
    Ile Asp Trp Glu Asp
        545
<210> 111
<211> 2063
<212> DNA
<213> Homo Sapien
<400> 111
    gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgagggac 50
    caaggcctgc cctgcactcg ggcctcctcc agccagtgct gaccagggac 100
    ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctcctgctgc 150
    cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 200
    agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250
    cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 300
    aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350
    attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400
    cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450
```

```
tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500
gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550
ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600
tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650
gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700
aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750
gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800
ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850
ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900
acccccactg ggtcctcacg gcagcccact gcttcaggaa acataccgat 950
gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000
atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050
ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100
tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150
tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200
gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250
agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300
gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350
acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400
atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450
caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaaggctg 1500
agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc ttccttcctg 1550
ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600
ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650
ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700
gtcagcagcc ctagctcggc cacacttggt gctcccagca tcccagggag 1750
agacacagcc cactgaacaa ggtctcaggg gtattgctaa gccaagaagg 1800
aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850
tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900
```

```
    tcttcaccca tccccaagcc tactagagca agaaaccagt tgtaatataa 1950
    aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000
    gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050
    caaaaaaaaa aaa 2063
<210> 112
<211> 432
<212> PRT
<213> Homo Sapien
<400> 112
    Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp
        1 5 10 15
    Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg
    20 25 30
    Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser
                            35 40 45
    Ile Ile Ile Val Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
                            50 55 60
    Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln
                        65 70 75
    Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu
        80 85 90
    His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg
        95 100 105
    Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr
        110 115 120
    Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu
        125 130 135
    Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu
        140 145 150
    Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn
        155 160 165
    Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser
        170 175 180
    Gly Ser Leu Val Ser Leu His Cys Leu Ala Cys Gly Lys Ser Leu
        185 190 195
    Lys Thr Pro Arg Val Val Gly Gly Glu Glu Ala Ser Val Asp Ser
```



```
    aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650
    gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700
    ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750
    aattatggtt atttgtaa 1768
<210> 114
<211> 109
<212> PRT
<213> Homo Sapien
<400> 114
    Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser
        1 5 10
    Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu
                            20 25 30
    Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly
                    35 40 45
    Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly
                            50 55 60
    Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro
            65 70 75
    Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala
                    80 85 90
    Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly
        95 100 105
    Arg Arg Arg Asp
<210> 115
<211> 1197
<212> DNA
<213> Homo Sapien
<400> 115
    cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50
    gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100
    ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150
    ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200
    gggggagcaa gcacttctgg ccggaggtac ccaaaaaagc ctatgacatg 250
    gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300
    tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350
```

```
aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400
gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450
attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500
ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550
aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600
gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650
actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700
gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa }75
gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800
atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat }85
tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900
acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950
tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000
gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050
atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100
cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150
tgttctaata aacttctaca ttatcaccaa aaaaaaaaaa aaaaaaa 1197
<210> 116
<211> 317
<212> PRT
<213> Homo Sapien
<400> 116
    Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu
        1 5 10
    Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys
                        20 25 30
    Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val
        35 40 45
    Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys
        50 55 60
    Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys
Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe
```


Arg Val

```
<210> 117
<211> 2121
<212> DNA
<213> Homo Sapien
<400> 117
gagctcccct caggagcgcg ttagcttcac accttcggca gcaggagggc 50
```



```
    agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500
    tcttattaca gcaacaccat tctaggagtt tcctgagctc tccactggag 1550
    tcctctttct gtcgcgggtc agaaattgtc cctagatgaa tgagaaaatt 1600
    atttttttta atttaagtcc taaatatagt taaaataaat aatgttttag 1650
    taaaatgata cactatctct gtgaaatagc ctcaccccta catgtggata 1700
    gaaggaaatg aaaaaataat tgctttgaca ttgtctatat ggtactttgt 1750
    aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800
    agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850
    gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900
    aaaaaatcag ccagtcatgg tggcatacac ctgtagtccc agcattccgg 1950
    gaggctgagg tgggaggatc acttgagccc agggaggttg gggctgcagt 2000
    gagccatgat cacaccactg cactccagcc aggtgacata gcgagatcct 2050
    gtctaaaaaa ataaaaaata aataatggaa cacagcaagt cctaggaagt 2100
    aggttaaaac taattcttta a 2121
<210> 118
<211> 261
<212> PRT
<213> Homo Sapien
<400> 118
    Met Ser Thr Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile
        1 5 10 15
    Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp
                            20 25 30
Ser Thr Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln
                    35 40 45
Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe
                            50 55 60
Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met
                65 70 75
Leu Gln Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly
                80 85 90
Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg
                95 100 105
Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr
    110 115 120
```



```
ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550
tagtgaatgt tgcccaaaaa cgtgagcttg gagaagctct ctacttagga 600
tggaccacgg cactggtgct gattgttgga ggagctctgt tctgctgcgt 650
tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700
atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750
tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800
taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850
caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900
actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950
tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000
taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050
tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100
tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150
tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200
actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250
ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300
gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350
tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400
atcctcttct cccagaggct ttttttttct tgtgtattaa attaacattt 1450
ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500
agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550
gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600
gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650
gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700
tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750
cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800
atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850
ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900
tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950
```

```
    aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000
    ttttctaatt 2010
<210> 120
<211> 225
<212> PRT
<213> Homo Sapien
<400> 120
    Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly
    Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp
        20 25 30
Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn
    Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile
        50 55 60
    Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro
    Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met
        80 85 90
    Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr
        95 100 105
Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu
    110 115 120
    Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile
        125 130 135
    Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn
    140 145 150
    Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu
        155 160 165
    Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala
    170 175 180
    Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr
    185 190 195
Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His
    200 205 210
Thr Gly Lys Lys Ser Pro Ser Val Tyr Ser Arg Ser Gln Tyr Val
<210> 121
```

```
<211> 1257
<212> DNA
<213> Homo Sapien
<400> 121
    ggagagaggc gcgcgggtga aaggcgcatt gatgcagcct gcggcggcct 50
    cggagcgcgg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100
    ccgcctccag ctccgcgctg cccggcagcc gggagccatg cgaccccagg 150
    gccccgccgc ctccccgcag cggctccgcg gcctcctgct gctcctgctg 200
    ctgcagctgc ccgcgccgtc gagcgcetct gagatcccca aggggaagca 250
    aaaggcgcag ctccggcaga gggaggtggt ggacctgtat aatggaatgt 300
    gcttacaagg gccagcagga gtgcctggtc gagacgggag ccctggggcc 350
    aatgttattc cgggtacacc tgggatccca ggtcgggatg gattcaaagg 400
    agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450
    actacaagca gtgttcatgg agttcattga attatggcat agatcttggg 500
    aaaattgcgg agtgtacatt tacaaagatg cgttcaaata gtgctctaag 550
    agttttgttc agtggctcac ttcggctaaa atgcagaaat gcatgctgtc 600
    agcgttggta tttcacattc aatggagctg aatgttcagg acctcttccc 650
    attgaagcta taatttattt ggaccaagga agccctgaaa tgaattcaac 700
    aattaatatt catcgcactt cttctgtgga aggactttgt gaaggaattg 750
    gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800
    ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat }85
    tgaagaacta ccaaaataaa tgctttaatt ttcatttgct acctcttttt 900
    ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950
    gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000
    tgatttcaca ctgtttttaa atctagcatt attcattttg cttcaatcaa 1050
    aagtggtttc aatatttttt ttagttggtt agaatacttt cttcatagtc 1100
    acattctctc aacctataat ttggaatatt gttgtggtct tttgtttttt 1150
    ctcttagtat agcattttta aaaaaatata aaagctacca atctttgtac 1200
    aatttgtaaa tgttaagaat tttttttata tctgttaaat aaaaattatt 1250
    tccaaca 1257
<210> 122
```

```
<211> 243
<212> PRT
<213> Homo Sapien
<400> 122
    Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
    Leu Leu Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala
        20 25 30
    Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg
        35 40 45
    Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
        50 55 60
    Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro
    Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys
        80 85 90
    Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn
        95 100 105
    Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu
        110 115 120
    Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser
        125 130 135
    Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
    Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
        155 160 165
    Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
        170 175 180
    Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
            185 190 195
    Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
        200 205 210
    Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
        215 220 225
    Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu
        230 235
        240
    Leu Pro Lys
<210> 123
```

```
<211> 2379
<212> DNA
<213> Homo Sapien
<400> 123
    gctgagcgtg tgcgcggtac ggggctctcc tgccttctgg gctccaacgc 50
    agctctgtgg ctgaactggg tgctcatcac gggaactgct gggctatgga 100
    atacagatgt ggcagctcag gtagccccaa attgcctgga agaatacatc 150
    atgtttttcg ataagaagaa attgtaggat ccagtttttt ttttaaccgc 200
    cccctcccca ccccccaaaa aaactgtaaa gatgcaaaaa cgtaatatcc 250
    atgaagatcc tattacctag gaagattttg atgttttgct gcgaatgcgg 300
    tgttgggatt tatttgttct tggagtgttc tgcgtggctg gcaaagaata 350
    atgttccaaa atcggtccat ctcccaaggg gtccaatttt tcttcctggg 400
    tgtcagcgag ccctgactca ctacagtgca gctgacaggg gctgtcatgc 450
    aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500
    acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550
    cactggttat agcccccact gtcttactga caatgctttc ttctgccgaa 600
    cgaggatgcc ctaagggctg taggtgtgaa ggcaaaatgg tatattgtga 650
    atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700
    gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750
    aaagggctca accagctcac ctggctatac cttgaccata accatatcag 800
    caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850
    ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900
    gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950
    gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000
    ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050
    aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100
    gaatgtcttt gctggcatga tcagactcaa agaacttcac ctggagcaca 1150
    atcaattttc caagctcaac ctggcccttt ttccaaggtt ggtcagcctt 1200
    cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250
    gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300
    tcgaagcttt cagtggaccc agtgttttcc agtgtgtccc gaatctgcag 1350
```

```
cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400
ggattcttgg atatccctca atgacatcag tcttgctggg aatatatggg 1450
aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500
ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550
agtaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600
ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650
cccaagctcc ccaggccgaa gcatgagagc aaaccccctt tgcccccgac 1700
ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750
tctctttcca taaaatcatc gcgggcagcg tggcgctttt cctgtccgtg 1800
ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850
catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900
aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950
gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000
gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050
ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100
ttgaactctg gtgactatca agggaacgcg atgccccccc tccccttccc 2150
tctccctctc actttggtgg caagatcctt cottgtccgt tttagtgcat 2200
tcataatact ggtcattttc ctctcataca taatcaaccc attgaaattt 2250
aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300
ttgtataaga ccctttactg attccattaa tgtcgcattt gttttaagat 2350
aaaacttctt tcataggtaa aaaaaaaaa 2379
<210> 124
<211> 513
<212> PRT
<213> Homo Sapien
<400> 124
    Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala
        1 5 10 15
Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala
                    20 25 30
Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val
                                35 40 45
```



```
    cacccgccat ttacagacac gtagtgtatt ctggaggtcg aatggtcaca 350
    tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta 400
    tcccctttgg aatcagtca ttggagggat gatggctggt gttattggcc 450
    agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500
    ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550
    tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600
    gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650
    accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700
    ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750
    cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800
    caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850
    ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900
    gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950
    cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998
<210> 126
<211> 323
<212> PRT
<213> Homo Sapien
<400> 126
    Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln
        1 5 10
Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala
                        20 25 30
Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr
                                    35 40 45
Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp
                                50 55 60
Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala
                                    65 70 75
Leu.Gly Ile Ile Glu Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly
        80 85 90
Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg
        95 100 105
Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser
    110 115 120
```



```
acatcgagga gctggctgct gaatgtaaga gtgcaggcta ccccgggact 300
ttgatcccct acagatgtga cctatcaaat gaagaggaca tcctctccat 350
gttctcagct atccgttctc agcacagcgg tgtagacatc tgcatcaaca 400
atgctggctt ggcccggcct gacaccctgc tctcaggcag caccagtggt 450
tggaaggaca tgttcaatgt gaacgtgctg gccctcagca tctgcacacg 500
ggaagcctac cagtccatga aggagcggaa tgtggacgat gggcacatca 550
ttaacatcaa tagcatgtct ggccaccgag tgttacccct gtctgtgacc 600
cacttctata gtgccaccaa gtatgccgtc actgcgctga cagagggact 650
gaggcaagag cttcgggagg cccagaccca catccgagcc acgtgcatct 700
ctccaggtgt ggtggagaca caattcgcct tcaaactcca cgacaaggac 750
cctgagaagg cagctgccac ctatgagcaa atgaagtgtc tcaaacccga 800
ggatgtggcc gaggctgtta tctacgtcct cagcaccccc gcacacatcc }85
agattggaga catccagatg aggcccacgg agcaggtgac ctagtgactg 900
tgggagctcc tccttccctc cccacccttc atggcttgcc tcctgcctct 950
ggattttagg tgttgatttc tggatcacgg gataccactt cctgtccaca 1000
ccccgaccag gggctagaaa atttgtttga gatttttata tcatcttgtc 1050
aaattgcttc agttgtaaat gtgaaaaatg ggctggggaa aggaggtggt 1100
gtccctaatt gttttacttg ttaacttgtt cttgtgcccc tgggcacttg 1150
gcctttgtct gctctcagtg tcttcccttt gacatgggaa aggagttgtg 1200
gccaaaatcc ccatcttctt gcacctcaac gtctgtggct cagggctggg 1250
gtggcagagg gaggccttca cottatatct gtgttgttat ccagggctcc 1300
agacttcctc ctctgcctgc cccactgcac cctctccccc ttatctatct 1350
ccttctcggc tccccagccc agtcttggct tcttgtcccc tcctggggtc 1400
atccctccac tctgactctg actatggcag cagaacacca gggcctggcc 1450
cagtggattt catggtgatc attaaaaaag aaaaatcgca accaaaaaaa 1500
aaaaa 1505
<210> 128
<211> 260
<212> PRT
<213> Homo Sapien
```

```
<400> 128
    Met Ala Arg Pro Gly Met Glu Arg Trp Arg Asp Arg Leu Ala Leu
    Val Thr Gly Ala Ser Gly Gly Ile Gly Ala Ala Val Ala Arg Ala
    20 25 30
    Leu Val Gln Gln Gly Leu Lys Val Val Gly Cys Ala Arg Thr Val
                                    35 40 45
    Gly Asn Ile Glu Glu Leu Ala Ala Glu Cys Lys Ser Ala Gly Tyr
        50 55 60
    Pro Gly Thr Leu Ile Pro Tyr Arg Cys Asp Leu Ser Asn Glu Glu
    Asp Ile Leu Ser Met Phe Ser Ala Ile Arg Ser Gln His Ser Gly
        80 85 90
    Val Asp Ile Cys Ile Asn Asn Ala Gly Leu Ala Arg Pro Asp Thr
        95 100 105
    Leu Leu Ser Gly Ser Thr Ser Gly Trp Lys Asp Met Phe Asn Val
        110 115 120
    Asn Val Leu Ala Leu Ser Ile Cys Thr Arg Glu Ala Tyr Gln Ser
        125 130
        130
                            135
    Met Lys Glu Arg Asn Val Asp Asp Gly His Ile Ile Asn Ile Asn
    Ser Met Ser Gly His Arg Val Leu Pro Leu Ser Val Thr His Phe
        155 160 165
    Tyr Ser Ala Thr Lys Tyr Ala Val Thr Ala Leu Thr Glu Gly Leu
        170 175 180
    Arg Gln Glu Leu Arg Glu Ala Gln Thr His Ile Arg Ala Thr Cys
        185 190 195
    Ile Ser Pro Gly Val Val Glu Thr Gln Phe Ala Phe Lys Leu His
        200 205 210
    Asp Lys Asp Pro Glu Lys Ala Ala Ala Thr Tyr Glu Gln Met Lys
        215 220
                            225
    Cys Leu Lys Pro Glu Asp Val Ala Glu Ala Val Ile Tyr Val Leu
        230 235 240
    Ser Thr Pro Ala His Ile Gln Ile Gly Asp Ile Gln Met Arg Pro
        245 250 255
    Thr Glu Gln Val Thr
        260
<210> 129
<211> 1177
<212> DNA
```

```
<213> Homo Sapien
<400> 129
    aacttctaca tgggcctcct gctgctggtg ctcttcctca gcctcctgcc 50
    ggtggcctac accatcatgt ccetcccacc ctcctttgac tgcgggccgt 100
    tcaggtgcag agtctcagtt gcccgggagc acctcccctc ccgaggcagt 150
    ctgctcagag ggcctcggcc cagaattcca gttctggttt catgccagcc 200
    tgtaaaaggc catggaactt tgggtgaatc accgatgcca tttaagaggg 250
    ttttctgcca ggatggaaat gttaggtcgt tctgtgtctg cgctgttcat 300
    ttcagtagcc accagccacc tgtggccgtt gagtgcttga aatgaggaac 350
    tgagaaaatt aatttctcat gtatttttct catttattta ttaattttta 400
    actgatagtt gtacatattt gggggtacat gtgatatttg gatacatgta 450
    tacaatatat aatgatcaaa tcagggtaac tgggatatcc atcacatcaa 500
    acatttattt tttattcttt ttagacagag tctcactctg tcacccaggc 550
    tggagtgcag tggtgccatc tcagcttact gcaacctctg cctgccaggt 600
    tcaagcgatt ctcatgcctc cacctcccaa gtagctggga ctacaggcat 650
    gcaccacaat gcccaactaa tttttgtatt tttagtagag acggggtttt 700
    gccatgttgc ccaggctggc cttgaactcc tggcctcaaa caatccactt }75
    gcctcggcct cccaaagtgt tatgattaca ggcgtgagcc accgtgcctg 800
    gcctaaacat ttatcttttc tttgtgttgg gaactttgaa attatacaat }85
    gaattattgt taactgtcat ctccctgctg tgctatggaa cactgggact 900
    tcttccctct atctaactgt atatttgtac cagttaacca accgtacttc 950
    atccccactc ctctctatcc ttcccaacct ctgatcacct cattctactc 1000
    tctacctcca tgagatccac ttttttagct cccacatgtg agtaagaaaa 1050
    tgcaatattt gtctttctgt gcctggctta tttcacttaa cataatgact 1100
    tcctgttcca tccatgttgc tgcaaatgac aggatttcgt tcttaatttc 1150
    aattaaaata accacacatg gcaaaaa 1177
<210> 130
<211> 111
<212> PRT
<213> Homo Sapien
<400> 130
    Met Gly Leu Leu Leu Leu Val Leu Phe Leu Ser Leu Leu Pro Val
```

Ala Tyr Thr Ile Met Ser Leu Pro Pro Ser Phe Asp Cys Gly Pro
20

```
<210> 131
<211> 2061
<212> DNA
<213> Homo Sapien
<400> 131
    ttctgaagta acggaagcta ccttgtataa agacctcaac actgctgacc 50
    atgatcagcg cagcctggag catcttcctc atcgggacta aaattgggct 100
    gttccttcaa gtagcacctc tatcagttat ggctaaatcc tgtccatctg 150
    tgtgtcgctg cgatgcgggt ttcatttact gtaatgatcg ctttctgaca 200
    tccattccaa caggaatacc agaggatgct acaactctct accttcagaa 250
    caaccaaata aataatgctg ggattccttc agatttgaaa aacttgctga 300
    aagtagaaag aatataccta taccacaaca gtttagatga atttcctacc 350
    aacctcccaa agtatgtaaa agagttacat ttgcaagaaa ataacataag 400
    gactatcact tatgattcac tttcaaaaat tccctatctg gaagaattac 450
    atttagatga caactctgtc tctgcagtta gcatagaaga gggagcattc 500
    cgagacagca actatctccg actgcttttc ctgtcccgta atcaccttag 550
    cacaattccc tggggtttgc ccaggactat agaagaacta cgcttggatg 600
    ataatcgcat atccactatt tcatcaccat ctcttcaagg tctcactagt 650
    ctaaaacgcc tggttctaga tggaaacctg ttgaacaatc atggtttagg 700
```

```
tgacaaagtt ttcttcaacc tagttaattt gacagagctg tccctggtgc 750
ggaattccct gactgctgca ccagtaaacc ttccaggcac aaacctgagg 800
aagctttatc ttcaagataa ccacatcaat cgggtgcccc caaatgcttt }85
ttcttatcta aggcagctct atcgactgga tatgtccaat aataacctaa 900
gtaatttacc tcagggtatc tttgatgatt tggacaatat aacacaactg 950
attcttcgca acaatccctg gtattgcggg tgcaagatga aatgggtacg 1000
tgactggtta caatcactac ctgtgaaggt caacgtgcgt gggctcatgt 1050
gccaagcccc agaaaaggtt cgtgggatgg ctattaagga tctcaatgca 1100
gaactgtttg attgtaagga cagtgggatt gtaagcacca ttcagataac 1150
cactgcaata cccaacacag tgtatcctgc ccaaggacag tggccagctc 1200
cagtgaccaa acagccagat attaagaacc ccaagctcac taaggatcaa 1250
caaaccacag ggagtccctc aagaaaaaca attacaatta ctgtgaagtc 1300
tgtcacctct gataccattc atatctcttg gaaacttgct ctacctatga 1350
ctgctttgag actcagctgg cttaaactgg gccatagccc ggcatttgga 1400
tctataacag aaacaattgt aacaggggaa cgcagtgagt acttggtcac 1450
agccctggag cctgattcac cctataaagt atgcatggtt cccatggaaa 1500
ccagcaacct ctacctattt gatgaaactc ctgtttgtat tgagactgaa 1550
actgcacccc ttcgaatgta caaccctaca accaccctca atcgagagca 1600
agagaaagaa ccttacaaaa accccaattt acctttggct gccatcattg 1650
gtggggctgt ggccctggtt accattgccc ttcttgcttt agtgtgttgg 1700
tatgttcata ggaatggatc gctcttctca aggaactgtg catatagcaa 1750
agggaggaga agaaaggatg actatgcaga agctggcact aagaaggaca 1800
actctatcct ggaaatcagg gaaacttctt ttcagatgtt accaataagc 1850
aatgaaccca tctcgaagga ggagtttgta atacacacca tatttcctcc 1900
taatggaatg aatctgtaca aaaacaatca cagtgaaagc agtagtaacc 1950
gaagctacag agacagtggt attccagact cagatcactc acactcatga 2000
tgctgaagga ctcacagcag acttgtgttt tgggtttttt aaacctaagg 2050
gaggtgatgg t 2061
<210> 132
```

```
<211> 649
<212> PRT
<213> Homo Sapien
<400> 132
    Met Ile Ser Ala Ala Trp Ser Ile Phe Leu Ile Gly Thr Lys Ile
        1 5 10
    Gly Leu Phe Leu Gln Val Ala Pro Leu Ser Val Met Ala Lys Ser
            20 25 30
    Cys Pro Ser Val Cys Arg Cys Asp Ala Gly Phe Ile Tyr Cys Asn
                35 40
                            4 5
    Asp Arg Phe Leu Thr Ser Ile Pro Thr Gly Ile Pro Glu Asp Ala
                            50 55 60
    Thr Thr Leu Tyr Leu Gln Asn Asn Gln Ile Asn Asn Ala Gly Ile
        65 70 75
    Pro Ser Asp Leu Lys Asn Leu Leu Lys Val Glu Arg Ile Tyr Leu
        80 85 90
    Tyr His Asn Ser Leu Asp Glu Phe Pro Thr Asn Leu Pro Lys Tyr
        95 100 105
    Val Lys Glu Leu His Leu Gln Glu Asn Asn Ile Arg Thr Ile Thr
        110 115 120
    Tyr Asp Ser Leu Ser Lys Ile Pro Tyr Leu Glu Glu Leu His Leu
            125 130 135
    Asp Asp Asn Ser Val Ser Ala Val Ser Ile Glu Glu Gly Ala Phe
        140 145 150
    Arg Asp Ser Asn Tyr Leu Arg Leu Leu Phe Leu Ser Arg Asn His
            155 160 165
    Leu Ser Thr Ile Pro Trp Gly Leu Pro Arg Thr Ile Glu Glu Leu
        170 175 180
    Arg Leu Asp Asp Asn Arg Ile Ser Thr Ile Ser Ser Pro Ser Leu
        185 190 195
    Gln Gly Leu Thr Ser Leu Lys Arg Leu Val Leu Asp Gly Asn Leu
        200 205 210
    Leu Asn Asn His Gly Leu Gly Asp Lys Val Phe Phe Asn Leu Val
            215 220 225
    Asn Leu Thr Glu Leu Ser Leu Val Arg Asn Ser Leu Thr Ala Ala
        230 235 240
    Pro Val Asn Leu Pro Gly Thr Asn Leu Arg Lys Leu Tyr Leu Gln
        245 250 255
    Asp Asn His Ile Asn Arg Val Pro Pro Asn Ala Phe Ser Tyr Leu
```


Thr Ile Ala Leu Leu Ala Leu Val Cys Trp Tyr Val His Arg Asn


```
caggagcctc atgaccaagc coggctgctc aggctactgc ctgtcccacc 800
aactgctctt cttcctctgg gccagaatga ggggatgcac acagggacca 850
ctccaacaga gccaggacta tatcaacctc ttctgcgcca acatgatgga 900
cttgaaccgc agagctgagg ccatcggata cgcctaccct acccgggaca 950
tcttcatgga aaacatcatg ttctgtggaa tgggcggctt ctccgacttc 1000
tacaagctcc ggtggctgga ggccattctc agctggcaga aacagcagga 1050
aggatgcttc ggggagcctg atgctgaaga tgaagaatta tctaaagcta 1100
ttcaatatca gcagcatttt tcgaggagag tgaagaggcg agaaaaacaa 1150
tttccagatt ctcgctctgt tgctcaggct ggagtacagt ggcgcaatct 1200
cggctcactg caacctttgc ctcctgggtt caagcaattc tcttgcctca 1250
tcctcccgag tagctgggac tacaggagcg tgccaccata cctggctaat 1300
ttttatattt ttttagtaga gacagggttt catcatgttg ctcatgctgg 1350
tctcgaactc ctgatctcaa gagatccgcc cacctcaggc tcccaaagtg 1400
tgggattata ggtgtgagcc accgtgtctg gctgaaaagc actttcaaag 1450
agactgtgtt gaataaaggg ccaaggttct tgccacccag cactcatggg 1500
ggctctctcc cctagatggc tgctcctccc acaacacagc cacagcagtg 1550
gcagccctgg gtggcttcct atacatcctg gcagaatacc ccccagcaaa 1600
cagagagcca cacccatcca caccgccacc accaagcagc cgctgagacg 1650
gacggttcca tgccagctgc ctggaggagg aacagacccc tttagtcctc 1700
atcccttaga tcctggaggg cacggatcac atcctgggaa gaaggcatct 1750
ggaggataag caaagccacc ccgacaccca atcttggaag ccctgagtag 1800
gcagggccag ggtaggtggg ggccgggagg gacccaggtg tgaacggatg 1850
aataaagttc aactgcaact gaaaaaaaaa aa 1882
<210> 134
<211> 440
<212> PRT
<213> Homo Sapien
<400> 134
    Met Ser Ala Arg Gly Arg Trp Glu Gly Gly Gly Arg Arg Ala Cys
        1 5 10 15
Arg Gly Ser Leu Gly Leu Ala Arg Ala Gln Gly Ala Glu Arg Val
    20 25 30
```



```
    gtttctgagt tcatgacaag actcttctct tcaaaatcat ctggcaaatc 700
    tagcagcggc agcagtaaaa caggcaaaag tggggctggc aaaaggaggt 750
    agtcaggccg tccagagctg gcatttgcac aaacacggca acactgggtg 800
    gcatccaagt cttggaaaac cgtgtgaagc aactactata aacttgagtc 850
    atcccgacgt tgatctctta caactgtgta tgtt 884
<210> 136
<211> 242
<212> PRT
<213> Homo Sapien
<400> 136
    Met Ala Ala Ala Leu Trp Gly Phe Phe Pro Val Leu Leu Leu Leu
        1 5 10
    Leu Leu Ser Gly Asp Val Gln Ser Ser Glu Val Pro Gly Ala Ala
                            20 25 30
Ala Glu Gly Ser Gly Gly Ser Gly Val Gly Ile Gly Asp Arg Phe
Lys Ile Glu Gly Arg Ala Val Val Pro Gly Val Lys Pro Gln Asp
        50 55 60
    Trp Ile Ser Ala Ala Arg Val Leu Val Asp Gly Glu Glu His Val
        65 70 75
    Gly Phe Leu Lys Thr Asp Gly Ser Phe Val Val His Asp Ile Pro
        80 85 90
    Ser Gly Ser Tyr Val Val Glu Val Val Ser Pro Ala Tyr Arg Phe
        95 100 105
    Asp Pro Val Arg Val Asp Ile Thr Ser Lys Gly Lys Met Arg Ala
        110 115 120
    Arg Tyr Val Asn Tyr Ile Lys Thr Ser Glu Val Val Arg Leu Pro
        125 130 135
    Tyr Pro Leu Gln Met Lys Ser Ser Gly Pro Pro Ser Tyr Phe Ile
        140 145 150
    Lys Arg Glu Ser Trp Gly Trp Thr Asp Phe Leu Met Asn Pro Met
        155 160 165
    Val Met Met Met Val Leu Pro Leu Leu Ile Phe Val Leu Leu Pro
    170 175 180
Lys Val Val Asn Thr Ser Asp Pro Asp Met Arg Arg Glu Met Glu
    185 190 195
    Gln Ser Met Asn Met Leu Asn Ser Asn His Glu Leu Pro Asp Val
```

```
    Ser Glu Phe Met Thr Arg Leu Phe Ser Ser Lys Ser Ser Gly Lys
            215 220 225
Ser Ser Ser Gly Ser Ser Lys Thr Gly Lys Ser Gly Ala Gly Lys
    230 235 240
```

Arg Arg
<210> 137
<211> 1571
<212> DNA
<213> Homo Sapien
<400> 137
gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50
gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
gaggctatat gcgtcaattc cccaaaacaa gttttgacat ttcccctgaa 150
atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
tttcaggcet aagatgaaag cctctagtct tgccttcagc cttctctctg 400
ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
gaatcttaag gaggactgag tctttgcaag acacaaagcc tgcgaatcga 600
tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650
aactaccag acccctgacc attatactct ccggaagatc agcagcctcg 700
ccaattcctt tcttaccatc aagaaggacc tccggctctc tcatgcccac 750
atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800
gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850
gggaactaga cattcttctg caatggatgg aggagacaga ataggaggaa 900
agtgatgctg ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950
acctgcagag gaggcatgac cccaaaccac catctcttta ctgtactagt 1000
cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050

```
    tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100
    atttttgtaa tatctttctg ctattggata tatttattag ttaatatatt 1150
    tatttatttt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200
    ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250
    gtatttttat acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300
    ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350
    gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400
    tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450
    ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500
    aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550
    ccaaaaaaaa aaaaaaaaaa a 1571
<210> 138
<211> 261
<212> PRT
<213> Homo Sapien
<400> 138
    Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met
        1 5 10
    Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu
    Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys
        35 40 45
        Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu
        Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gln Phe Phe Leu
        65 70 75
    Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser
        80 85 90
    Leu Ala Phe Ser Leu Leu Ser Ala Ala Phe Tyr Leu Leu Trp Thr
        95 100 105
    Pro Ser Thr Gly Leu Lys Thr Leu Asn Leu Gly Ser Cys Val Ile
        110 115 120
Ala Thr Asn Leu Gln Glu Ile Arg Asn Gly Phe Ser Glu Ile Arg
        125 130 135
Gly Ser Val Gln Ala Lys Asp Gly Asn Ile Asp Ile Arg Ile Leu
```


Trp Met Glu Glu Thr Glu
260

```
<210> 139
<211> 2395
<212> DNA
<213> Homo Sapien
<400> 139
    cctggagccg gaagcgcggc tgcagcaggg cgaggctcca ggtgggggtcg 50
    gttccgcatc cagcctagcg tgtccacgat gcggctgggc tccgggactt 100
    tcgctacctg ttgcgtagcg atcgaggtgc tagggatcgc ggtcttcctt 150
    cggggattct tcccggctcc cgttcgttcc tctgccagag cggaacacgg 200
    agcggagccc ccagcgcccg aaccctcggc tggagccagt tctaactgga 250
    ccacgctgcc accacctctc ttcagtaaag ttgttattgt tctgatagat 300
    gccttgagag atgattttgt gtttgggtca aagggtgtga aatttatgcc 350
    ctacacaact taccttgtgg aaaaaggagc atctcacagt tttgtggctg 400
    aagcaaagcc acctacagtt actatgcctc gaatcaaggc attgatgacg 450
    gggagccttc ctggctttgt cgacgtcatc aggaacctca attctcctgc 500
    actgctggaa gacagtgtga taagacaagc aaaagcagct ggaaaaagaa 550
    tagtctttta tggagatgaa acctgggtta aattattccc aaagcatttt 600
    gtggaatatg atggaacaac ctcatttttc gtgtcagatt acacagaggt 650
```



```
    tgaggcagtg aagaagaggc ggatggtcac actcagatcc acagagccca 2100
    ggatcaaggg acccactgca gtggcagcag gactgttggg cccccacccc 2150
    aaccctgcac agccctcatc ccetcttggc ttgagccgtc agaggccetg 2200
    tgctgagtgt ctgaccgaga cactcacagc tttgtcatca gggcacaggc 2250
    ttcctcggag ccaggatgat ctgtgccacg cttgcacctc gggcccatct 2300
    gggctcatgc tctctctcct gctattgaat tagtacctag ctgcacacag 2350
    tatgtagtta ccaaaagaat aaacggcaat aattgagaaa aaaaa 2395
<210> 140
<211> 310
<212> PRT
<213> Homo Sapien
<400> 140
    Met Arg Leu Gly Ser Gly Thr Phe Ala Thr Cys Cys Val Ala Ile
        1 5 10
    Glu Val Leu Gly Ile Ala Val Phe Leu Arg Gly Phe Phe Pro Ala
    20 25 30
    Pro Val Arg Ser Ser Ala Arg Ala Glu His Gly Ala Glu Pro Pro
    35 40 45
Ala Pro Glu Pro Ser Ala Gly Ala Ser Ser Asn Trp Thr Thr Leu
    50 55 60
    Pro Pro Pro Leu Phe Ser Lys Val Val Ile Val Leu Ile Asp Ala
    Leu Arg Asp Asp Phe Val Phe Gly Ser Lys Gly Val Lys Phe Met
        80 85 90
    Pro Tyr Thr Thr Tyr Leu Val Glu Lys Gly Ala Ser His Ser Phe
        95 100 105
    Val Ala Glu Ala Lys Pro Pro Thr Val Thr Met Pro Arg Ile Lys
        110 115 120
    Ala Leu Met Thr Gly Ser Leu Pro Gly Phe Val Asp Val Ile Arg
        125 130 135
    Asn Leu Asn Ser Pro Ala Leu Leu Glu Asp Ser Val Ile Arg Gln
        140 145 150
    Ala Lys Ala Ala Gly Lys Arg Ile Val Phe Tyr Gly Asp Glu Thr
    155 160 165
    Trp Val Lys Leu Phe Pro Lys His Phe Val Glu Tyr Asp Gly Thr
        170 175 180
Thr Ser Phe Phe Val Ser Asp Tyr Thr Glu Val Asp Asn Asn Val
```



```
    agctgaaatg agccccagtg aggtcagcga ttaggaaact gccccattga 700
    acgccttcct cgctaatttg aactaattgt ataaaaacac caaacctgct 750
    cact }75
<210> 142
<211> 193
<212> PRT
<213> Homo Sapien
<400> 142
    Met Leu Leu Leu Leu Leu Glu Tyr Asn Phe Pro Ile Glu Asn Asn
        1 5 10
    Cys Gln His Leu Lys Thr Thr His Thr Phe Arg Val Lys Asn Leu
    20 25 30
    Asn Pro Lys Lys Phe Ser Ile His Asp Gln Asp His Lys Val Leu
    Val Leu Asp Ser Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr
                    50 55 60
    Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser
        65 70 75
    Ala Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly Val Ser Lys
        80.85 90
    Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln Ser His
        95 100 105
    Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala Ala
        110 115 120
    Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln
        125 130 135
    Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro Gly Trp
        140 145 150
    Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val Thr
        155 160 165
    Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro
        170 175 180
    Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp
        185 190
<210> 143
<211> 961
<212> DNA
<213> Homo Sapien
<400> 143
```

```
ctagagagta tagggcagaa ggatggcaga tgagtgactc cacatccaga 50
gctgcctccc tttaatccag gatcctgtcc ttcctgtcct gtaggagtgc 100
ctgttgccag tgtggggtga gacaagtttg tcccacaggg ctgtctgagc 150
agataagatt aagggctggg tctgtgctca attaactcct gtgggcacgg 200
gggctgggaa gagcaaagtc agcggtgcct acagtcagca ccatgctggg 250
cctgccgtgg aagggaggtc tgtcctgggc gctgctgctg cttctcttag 300
gctcccagat cctgctgatc tatgcctggc atttccacga gcaaagggac 350
tgtgatgaac acaatgtcat ggctcgttac ctccctgcca cagtggagtt 400
tgctgtccac acattcaacc aacagagcaa ggactactat gcctacagac 450
tggggcacat cttgaattcc tggaaggagc aggtggagtc caagactgta 500
ttctcaatgg agctactgct ggggagaact aggtgtggga aatttgaaga 550
cgacattgac aactgccatt tccaagaaag cacagagctg aacaatactt 600
tcacctgctt cttcaccatc agcaccaggc cctggatgac tcagttcagc 650
ctcctgaaca agacctgctt ggagggattc cactgagtga aacccactca 700
caggcttgtc catgtgctgc tcccacattc cgtggacatc agcactactc 750
tcctgaggac tcttcagtgg ctgagcagct ttggacttgt ttgttatcct 800
attttgcatg tgtttgagat ctcagatcag tgttttagaa aatccacaca 850
tcttgagcct aatcatgtag tgtagatcat taaacatcag cattttaaga 900
aaaaaaaaaa aaaaaaaaaa aaamaaaaaa aaaaaaaaaa aaaaaaaaaa 950
aaaaaaaaaa a 961
<210> 144
<211> 147
<212> PRT
<213> Homo Sapien
<400> 144
    Met Leu Gly Leu Pro Trp Lys Gly Gly Leu Ser Trp Ala Leu Leu
    1 5 10 15
Leu Leu Leu Leu Gly Ser Gln Ile Leu Leu Ile Tyr Ala Trp His
                        20 25 30
    Phe His Glu Gln Arg Asp Cys Asp Glu His Asn Val Met Ala Arg
                        35 40 45
Tyr Leu Pro Ala Thr Val Glu Phe Ala Val His Thr Phe Asn Gln

```

 gaacacatca ggcactgcgc cacctgcttc acagtacttc ccaacaactc 900
 ttagaggtag gtgtattccc gttttacaga taaggaaact gaggcccaga 950
 gagctgaagt actgcaccca gcatcaccag ctagaaagtg gcagagccag 1000
 gattcaaccc tggcttgtct aaccccaggt tttctgctct gtccaattcc 1050
 agagctgtct ggtgatcact ttatgtctca cagggaccca catccaaaca 1100
 tgtatctcta atgaaattgt gaaagctcca tgtttagaaa taaatgaaaa 1150
 cacctga 1157
 <210> 146
<211> 176
<212> PRT
<213> Homo Sapien
<400> 146
Met Arg Lys His Leu Ser Trp Trp Trp Leu Ala Thr Val Cys Met
1 5 10 15
Leu Leu Phe Ser His Leu Ser Ala Val Gln Thr Arg Gly Ile Lys
20 25 30
His Arg Ile Lys Trp Asn Arg Lys Ala Leu Pro Ser Thr Ala Gln
35 40 45
Ile Thr Glu Ala Gln Val Ala Glu Asn Arg Pro Gly Ala Phe Ile
50 55 60
Lys Gln Gly Arg Lys Leu Asp Ile Asp Phe Gly Ala Glu Gly Asn
65 70 75
Arg Tyr Tyr Glu Ala Asn Tyr Trp Gln Phe Pro Asp Gly Ile His
80 85 90
Tyr Asn Gly Cys Ser Glu Ala Asn Val Thr Lys Glu Ala Phe Val
95 100 105
Thr Gly Cys Ile Asn Ala Thr Gln Ala Ala Asn Gln Gly Glu Phe
110 115 120
Gln Lys Pro Asp Asn Lys Leu His Gln Gln Val Leu Trp Arg Leu
125 130 135
Val Gln Glu Leu Cys Ser Leu Lys His Cys Glu Phe Trp Leu Glu
140 145 150
Arg Gly Ala Gly Leu Arg Val Thr Met His Gln Pro Val Leu Leu
155 160 165
Cys Leu Leu Ala Leu Ile Trp Leu Met Val Lys
170
175

```
```

<210> 147
<211> 333
<212> DNA
<213> Homo Sapien
<400> 147
gccttggcct cccaaagggc tgggattata ggcgtgacca ccatgtctgg 50
tccagagtct catttcctga tgatttatag actcaaagaa aactcatgtt 100
cagaagctct cttctcttct ggcetcetct ctgtcttctt tccetctttc 150
ttcttatttt aattagtagc atctactcag agtcatgcaa gctggaaatc 200
tttcattttg cttgtcagtg gggtaggtca ctgagtctta gtttttattt 250
tttgaaattt caactttcag attcaggggg tacatgtgaa ggtttgtttt 300
atgagtatat tgcatgatgc tgaggtttgg ggt 333
<210> 148
<211> 73
<212> PRT
<213> Homo Sapien
<400> 148
Met Phe Arg Ser Ser Leu Leu Phe Trp Pro Pro Leu Cys Leu Leu
1 5 10 15
Ser Leu Phe Leu Leu Ile Leu Ile Ser Ser Ile Tyr Ser Glu Ser
20 25 30
Cys Lys Leu Glu Ile Phe His Phe Ala Cys Gln Trp Gly Arg Ser
35 40 45
Leu Ser Leu Ser Phe Tyr Phe Leu Lys Phe Gln Leu Ser Asp Ser
50 55 60
Gly Gly Thr Cys Glu Gly Leu Phe Tyr Glu Tyr Ile Ala
65 70
<210> 149
<211> 1893
<212> DNA
<213> Homo Sapien
<400> 149
gtctccgcgt cacaggaact tcagcaccca cagggcggac agcgctcccc 50
tctacctgga gacttgactc ccgcgcgccc caaccctgct tatcccttga 100
ccgtcgagtg tcagagatcc tgcagccgcc cagtcccggc coctctcccg 150
ccccacaccc accctcctgg ctcttcctgt ttttactcct ccttttcatt 200
cataacaaaa gctacagctc caggagccca gcgccgggct gtgacccaag 250

```

```

 ctgtttcaga aaacataata tagcttaaaa cacttctaat tctgtgatta 1750
 aaattttttg acccaagggt tattagaaag tgctgaattt acagtagtta 1800
 accttttaca agtggttaaa acatagcttt cttcccgtaa aaactatctg 1850
 aaagtaaagt tgtatgtaag ctgaaaaaaa aaaaaaaaaa aaa 1893
 <210> 150
<211> 468
<212> PRT
<213> Homo Sapien
<400> 150
Met Gly Phe Leu Gly Thr Gly Thr Trp Ile Leu Val Leu Val Leu
1 5 10
Pro Ile Gln Ala Phe Pro Lys Pro Gly Gly Ser Gln Asp Lys Ser
20 25 30
Leu His Asn Arg Glu Leu Ser Ala Glu Arg Pro Leu Asn Glu Gln
35 40 45
Ile Ala Glu Ala Glu Glu Asp Lys Ile Lys Lys Thr Tyr Pro Pro
50 55 60
Glu Asn Lys Pro Gly Gln Ser Asn Tyr Ser Phe Val Asp Asn Leu
65 70 75
Asn Leu Leu Lys Ala Ile Thr Glu Lys Glu Lys Ile Glu Lys Glu
80 85 90
Arg Gln Ser Ile Arg Ser Ser Pro Leu Asp Asn Lys Leu Asn Val
Glu Asp Val Asp Ser Thr Lys Asn Arg Lys Leu Ile Asp Asp Tyr
110 115 120
Asp Ser Thr Lys Ser Gly Leu Asp His Lys Phe Gln Asp Asp Pro
125 130 135
Asp Gly Leu His Gln Leu Asp Gly Thr Pro Leu Thr Ala Glu Asp
140 145 150
Ile Val His Lys Ile Ala Ala Arg Ile Tyr Glu Glu Asn Asp Arg
155 160 165
Ala Val Phe Asp Lys Ile Val Ser Lys Leu Leu Asn Leu Gly Leu
170 175 180
Ile Thr Glu Ser Gln Ala His Thr Leu Glu Asp Glu Val Ala Glu
185 190 195
Val Leu Gln Lys Leu Ile Ser Lys Glu Ala Asn Asn Tyr Glu Glu
Asp Pro Asn Lys Pro Thr Ser Trp Thr Glu Asn Gln Ala Gly Lys

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{\multirow[t]{8}{*}{Val Thr Pro Met Ala Ala Ile Gln Asp Gly 230235}} \\
\hline & & & & & \\
\hline
\end{tabular}

Ala Lys Gly Glu Asn Asp Glu Thr Val Ser Asn Thr Leu Thr Leu 245

255
Thr Asn Gly Leu Glu Arg Arg Thr Lys Thr Tyr Ser Glu Asp Asn 260265270

Phe Glu Glu Leu Gln Tyr Phe Pro Asn Phe Tyr Ala Leu Leu Lys 275280285

Ser Ile Asp Ser Glu Lys Glu Ala Lys Glu Lys Glu Thr Leu Ile 290295 300

Thr Ile Met Lys Thr Leu Ile Asp Phe Val Lys Met Met Val Lys 305310315

Tyr Gly Thr Ile Ser Pro Glu Glu Gly Val Ser Tyr Leu Glu Asn 320325330

Leu Asp Glu Met Ile Ala Leu Gln Thr Lys Asn Lys Leu Glu Lys 335340345

Asn Ala Thr Asp Asn Ile Ser Lys Leu Phe Pro Ala Pro Ser Glu 350355360

Lys Ser His Glu Glu Thr Asp Ser Thr Lys Glu Glu Ala Ala Lys 365370375

Met Glu Lys Glu Tyr Gly Ser Leu Lys Asp Ser Thr Lys Asp Asp 380385390

Asn Ser Asn Pro Gly Gly Lys Thr Asp Glu Pro Lys Gly Lys Thr 395400405

Glu Ala Tyr Leu Glu Ala Ile Arg Lys Asn Ile Glu Trp Leu Lys 410415420

Lys His Asp Lys Lys Gly Asn Lys Glu Asp Tyr Asp Leu Ser Lys 425430435

Met Arg Asp Phe Ile Asn Lys Gln Ala Asp Ala Tyr Val Glu Lys 440445450

Gly Ile Leu Asp Lys Glu Glu Ala Glu Ala Ile Lys Arg Ile Tyr 455460465

Ser Ser Leu
<210> 151
<211> 2598
<212> DNA
<213> Homo Sapien
```

<400> 151
cggctcgagg ctcccgccag gagaaaggaa cattctgagg ggagtctaca 50
ccctgtggag ctcaagatgg tcctgagtgg ggcgctgtgc ttccgaatga 100
aggactcggc attgaaggtg ctttatctgc ataataacca gcttctagct 150
ggagggctgc atgcagggaa ggtcattaaa ggtgaagaga tcagcgtggt 200
ccccaatcgg tggctggatg ccagcctgtc ccccgtcatc ctgggtgtcc 250
agggtggaag ccagtgcctg tcatgtgggg tggggcagga gccgactcta 300
acactagagc cagtgaacat catggagctc tatcttggtg ccaaggaatc 350
caagagcttc accttctacc ggcgggacat ggggctcacc tccagcttcg 400
agtcggctgc ctaccogggc tggttcctgt gcacggtgcc tgaagccgat 450
cagcctgtca gactcaccca gcttcccgag aatggtggct ggaatgcccc 500
catcacagac ttctacttcc agcagtgtga ctagggcaac gtgcccccca 550
gaactccctg ggcagagcca gctcgggtga ggggtgagtg gaggagaccc 600
atggcggaca atcactctct ctgctctcag gacccccacg tctgacttag 650
tgggcacctg accactttgt cttctggttc ccagtttgga taaattctga 700
gatttggagc tcagtccacg gtcctccccc actggatggt gctactgctg 750
tggaaccttg taaaaaccat gtggggtaaa ctgggaataa catgaaaaga }80
tttctgtggg ggtggggtgg gggagtggtg ggaatcattc ctgcttaatg 850
gtaactgaca agtgttaccc tgagccccgc aggccaaccc atccccagtt 900
gagccttata gggtcagtag ctctccacat gaagtcctgt cactcaccac 950
tgtgcaggag agggaggtgg tcatagagtc agggatctat ggcccttggc 1000
ccagccccac coccttccct ttaatcctgc cactgtcata tgctaccttt 1050
cctatctctt ccctcatcat cttgttgtgg gcatgaggag gtggtgatgt 1100
cagaagaaat ggctcgagct cagaagataa aagataagta gggtatgctg 1150
atcctctttt aaaaacccaa gatacaatca aaatcccaga tgctggtctc 1200
tattcccatg aaaaagtgct catgacatat tgagaagacc tacttacaaa 1250
gtggcatata ttgcaattta ttttaattaa aagataccta tttatatatt 1300
tctttataga aaaaagtctg gaagagttta cttcaattgt agcaatgtca 1350
gggtggtggc agtataggtg atttttcttt taattctgtt aatttatctg 1400

```
```

 tatttcctaa tttttctaca atgaagatga attccttgta taaaaataag 1450
 aaaagaaatt aatcttgagg taagcagagc agacatcatc tctgattgtc 1500
 ctcagcctcc acttccccag agtaaattca aattgaatcg agctctgctg 1550
 ctctggttgg ttgtagtagt gatcaggaaa cagatctcag caaagccact 1600
 gaggaggagg ctgtgctgag tttgtgtggc tggaatctct gggtaaggaa 1650
 cttaaagaac aaaaatcatc tggtaattct ttcctagaag gatcacagcc 1700
 cctgggattc caaggcattg gatccagtct ctaagaaggc tgctgtactg 1750
 gttgaattgt gtccccctca aattcacatc cttcttggaa tctcagtctg 1800
 tgagtttatt tggagataag gtctctgcag atgtagttag ttaagacaag 1850
 gtcatgctgg atgaaggtag acctaaattc aatatgactg gtttccttgt 1900
 atgaaaagga gaggacacag agacagagga gacgcgggga agactatgta 1950
 aagatgaagg cagagatcgg agttttgcag ccacaagcta agaaacacca. 2000
 aggattgtgg caaccatcag aagcttggaa gaggcaaaga agaattcttc 2050
 cctagaggct ttagagggat aacggctctg ctgaaacctt aatctcagac 2100
 ttccagcctc ctgaacgaag aaagaataaa tttcggctgt tttaagccac 2150
 caaggataat tggttacagc agctctagga aactaataca gctgctaaaa 2200
 tgatccctgt ctcctcgtgt ttacattctg tgtgtgtccc ctcccacaat 2250
 gtaccaaagt tgtctttgtg accaatagaa tatggcagaa gtgatggcat 2300
 gccacttcca agattaggtt ataaaagaca ctgcagcttc tacttgagcc 2350
 ctctctctct gccacccacc gcccccaatc tatcttggct cactcgctct 2400
 gggggaagct agctgccatg ctatgagcag gcctataaag agacttacgt 2450
 ggtaaaaaat gaagtctcct gcccacagcc acattagtga acctagaagc 2500
 agagactctg tgagataatc gatgtttgtt gttttaagtt gctcagtttt 2550
 ggtctaactt gttatgcagc aatagataaa taatatgcag agaaagag 2598
 <210> 152
<211> 155
<212> PRT
<213> Homo Sapien
<400> 152
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala
1 5 10

```

```

gagaactgga tttgctgttt atgtctctga gaaatgcctg catttgacca 600
gagcaaagct gaaaaatgaa taactaaccc cctttccctg ctagaaataa 650
caattagatg ccccaaagcg atttttttta accaaaagga agatgggaag 700
ccaaactcca tcatgatggg tggattccaa atgaacccct gcgttagtta 750
caaaggaaac caatgccact tttgtttata agaccagaag gtagactttc 800
taagcataga tatttattga taacatttca ttgtaactgg tgttctatac 850
acagaaaaca atttattttt taaataattg tctttttcca taaaaaagat 900
tactttccat tcctttaggg gaaaaaaccc ctaaatagct tcatgtttcc 950
ataatcagta ctttatattt ataaatgtat ttattattat tataagactg 1000
cattttattt atatcatttt attaatatgg atttatttat agaaacatca 1050
ttcgatattg ctacttgagt gtaaggctaa tattgatatt tatgacaata 1100
attatagagc tataacatgt ttatttgacc tcaataaaca cttggatatc 1150
cc 1152
<210> 154
<211> 179
<212> PRT
<213> Homo Sapien
<400> 154
Met Ala Ala Leu Gln Lys Ser Val Ser Ser Phe Leu Met Gly Thr
1 5 10
Leu Ala Thr Ser Cys Leu Leu Leu Leu Ala Leu Leu Val Gln Gly
20 25 30
Gly Ala Ala Ala Pro Ile Ser Ser His Cys Arg Leu Asp Lys Ser
35 40 45
Asn Phe Gln Gln Pro Tyr Ile Thr Asn Arg Thr Phe Met Leu Ala
50 55 60
Lys Glu Ala Ser Leu Ala Asp Asn Asn Thr Asp Val Arg Leu Ile
65 70 75
Gly Glu Lys Leu Phe His Gly Val Ser Met Ser Glu Arg Cys Tyr
80 85
85 90
Leu Met Lys Gln Val Leu Asn Phe Thr Leu Glu Glu Val Leu Phe
95 100 105
Pro Gln Ser Asp Arg Phe Gln Pro Tyr Met Gln Glu Val Val Pro
110 115
115
120

```

```

gctggtgtcc tgtcattttc tctcaggaaa ggttttcaaa gttctgccca 1050
tttctggagg ccaccactcc tgtctcttcc tcttttccca tccectgcta 1100
ccctggccca gcacaggcac tttctagata tttccccctt gctggagaag 1150
aaagagcccc tggttttatt tgtttgttta ctcatcactc agtgagcatc 1200
tactttgggt gcattctagt gtagttacta gtcttttgac atggatgatt 1250
ctgaggagga agctgttatt gaatgtatag agatttatcc aaataaatat 1300
ctttatttaa aaatgaaaaa 1320
<210> 156
<211> 177
<212> PRT
<213> Homo Sapien
<400> 156
Met Arg Glu Arg Pro Arg Leu Gly Glu Asp Ser Ser Leu Ile Ser
1 5 10
Leu Phe Leu Gln Val Val Ala Phe Leu Ala Met Val Met Gly Thr
His Thr Tyr Ser His Trp Pro Ser Cys Cys Pro Ser Lys Gly Gln
Asp Thr Ser Glu Glu Leu Leu Arg Trp Ser Thr Val Pro Val Pro
50 55 60
Pro Leu Glu Pro Ala Arg Pro Asn Arg His Pro Glu Ser Cys Arg
65 70 75
Ala Ser Glu Asp Gly Pro Leu Asn Ser Arg Ala Ile Ser Pro Trp
80 85 90
Arg Tyr Glu Leu Asp Arg Asp Leu Asn Arg Leu Pro Gln Asp Leu
Tyr His Ala Arg Cys Leu Cys Pro His Cys Val Ser Leu Gln Thr
110 115 120
Gly Ser His Met Asp Pro Arg Gly Asn Ser Glu Leu Leu Tyr His
125 130 135
Asn Gln Thr Val Phe Tyr.Arg Arg Pro Cys His Gly Glu Lys Gly
140 145 150
Thr His Lys Gly Tyr Cys Leu Glu Arg Arg Leu Tyr Arg Val Ser
155 160 165
Leu Ala Cys Val Cys Val Arg Pro Arg Val Met Gly
170
175

```
```

<210> 157
<211> 1515
<212> DNA
<213> Homo Sapien
<400> 157
ccggcgatgt cgctcgtgct gctaagcctg gccgcgctgt gcaggagcgc 50
cgtaccccga gagccgaccg ttcaatgtgg ctctgaaact gggccatctc 100
cagagtggat gctacaacat gatctaatcc ccggagactt gagggacctc 150
cgagtagaac ctgttacaac tagtgttgca acaggggact attcaatttt 200
gatgaatgta agctgggtac tccgggcaga tgccagcatc cgcttgttga 250
aggccaccaa gatttgtgtg acgggcaaaa gcaacttcca gtcctacagc 300
tgtgtgaggt gcaattacac agaggccttc cagactcaga ccagaccctc 350
tggtggtaaa tggacatttt cctacatcgg cttccctgta gagctgaaca 400
cagtctattt cattggggcc cataatattc ctaatgcaaa tatgaatgaa 450
gatggccctt ccatgtctgt gaatttcacc tcaccaggct gcctagacca 500
cataatgaaa tataaaaaaa agtgtgtcaa ggccggaagc ctgtgggatc 550
cgaacatcac tgcttgtaag aagaatgagg agacagtaga agtgaacttc 600
acaaccactc ccctgggaaa cagatacatg gctcttatcc aacacagcac 650
tatcatcggg ttttctcagg tgtttgagcc acaccagaag aaacaaacgc 700
gagcttcagt ggtgattcca gtgactgggg atagtgaagg tgctacggtg 750
cagctgactc catattttcc tacttgtggc agcgactgca tccgacataa }80
aggaacagtt gtgctctgcc cacaaacagg cgtccctttc cctctggata 850
acaacaaaag caagccggga ggctggctgc ctctcctcct gctgtctctg 900
ctggtggcca catgggtgct ggtggcaggg atctatctaa tgtggaggca 950
cgaaaggatc aagaagactt ccttttctac caccacacta ctgcceccca 1000
ttaaggttct tgtggtttac ccatctgaaa tatgtttcca tcacacaatt 1050
tgttacttca ctgaatttct tcaaaaccat tgcagaagtg aggtcatcct 1100
tgaaaagtgg cagaaaaaga aaatagcaga gatgggtcca gtgcagtggc 1150
ttgccactca aaagaaggca gcagacaaag tcgtcttcct tctttccaat 1200
gacgtcaaca gtgtgtgcga tggtacctgt ggcaagagcg agggcagtcc 1250
cagtgagaac tctcaagacc tcttccccct tgcctttaac cttttctgca 1300

```
```

 gtgatctaag aagccagatt catctgcaca aatacgtggt ggtctacttt 1350
 agagagattg atacaaaaga cgattacaat gctctcagtg tctgccccaa 1400
 gtaccacctc atgaaggatg ccactgcttt ctgtgcagaa cttctccatg 1450
 tcaagcagca ggtgtcagca ggaaaaagat cacaagcctg ccacgatggc 1500
 tgctgctcct tgtag 1515
 <210> 158
<211> 502
<212> PRT
<213> Homo Sapien
<400> 158
Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala
1 5 10
Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro
20 25 30
Ser Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu
35 40 45
Arg Asp Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly
50 55 60
Asp Tyr Ser Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp
65 70 75
Ala Ser Ile Arg Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly
80 85 90
Lys Ser Asn Phe Gln Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr
95 100 105
Glu Ala Phe Gln Thr Gln Thr Arg Pro Ser Gly Gly Lys Trp Thr
110 115 120
Phe Ser Tyr Ile Gly Phe Pro Val Glu Leu Asn Thr Val Tyr Phe
125 130 135
Ile Gly Ala His Asn Ile Pro Asn Ala Asn Met Asn Glu Asp Gly
140 145
150
Pro Ser Met Ser Val Asn Phe Thr Ser Pro Gly Cys Leu Asp His
155 160 165
Ile Met Lys Tyr Lys Lys Lys Cys Val Lys Ala Gly Ser Leu Trp
170 175
175 180
Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu Glu Thr Val Glu
185 190
90
195
Val Asn Phe Thr Thr Thr Pro Leu Gly Asn Arg Tyr Met Ala Leu

```


Gly Asp Ser Glu Gly Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro 245250255 Thr Cys Gly Ser Asp Cys Ile Arg His Lys Gly Thr Val Val Leu 260265270

Cys Pro Gln Thr Gly Val Pro Phe Pro Leu Asp Asn Asn Lys Ser 275280285

Lys Pro Gly Gly Trp Leu Pro Leu Leu Leu Leu Ser Leu Leu Val 290295300

Ala Thr Trp Val Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His 305

310
315
Glu Arg Ile Lys Lys Thr Ser Phe Ser Thr Thr Thr Leu Leu Pro 320325330

Pro Ile Lys Val Leu Val Val Tyr Pro Ser Glu Ile Cys Phe His 335340345

His Thr Ile Cys Tyr Phe Thr Glu Phe Leu Gln Asn His Cys Arg 350355360

Ser Glu Val Ile Leu Glu Lys Trp Gln Lys Lys Lys Ile Ala Glu 365370375

Met Gly Pro Val Gln Trp Leu Ala Thr Gln Lys Lys Ala Ala Asp 380385390

Lys Val Val Phe Leu Leu Ser Asn Asp Val Asn Ser Val Cys Asp 395400405

Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro Ser Glu Asn Ser Gln 410415420

Asp Leu Phe Pro Leu Ala Phe Asn Leu Phe Cys Ser Asp Leu Arg
425
Ser Gln Ile His Leu His Lys Tyr Val Val Val Tyr Phe Arg Glu 440445450

Ile Asp Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys Pro Lys 455460465

Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu 470475480

His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys
```

His Asp Gly Cys Cys Ser Leu
500

```
```

<210> 159
<211> 535
<212> DNA
<213> Homo Sapien
<400> 159
agccaccagc gcaacatgac agtgaagacc ctgcatggcc cagccatggt 50
caagtacttg ctgctgtcga tattggggct tgcctttctg agtgaggcgg 100
cagctcggaa aatccccaaa gtaggacata cttttttcca aaagcctgag 150
agttgcccgc ctgtgccagg aggtagtatg aagcttgaca ttggcatcat 200
caatgaaaac cagcgcgttt ccatgtcacg taacatcgag agccgctcca 250
cctccccctg gaattacact gtcacttggg accccaaccg gtaccoctcg 300
gaagttgtac aggcccagtg taggaacttg ggctgcatca atgctcaagg 350
aaaggaagac atctccatga attccgttcc catccagcaa gagaccctgg 400
tcgtccggag gaagcaccaa ggctgctctg tttctttcca gttggagaag 450
gtgctggtga ctgttggctg cacctgcgtc acccctgtca tccaccatgt 500
gcagtaagag gtgcatatcc actcagctga agaag 535

```
<210> 160
<211> 163
<212> PRT
<213> Homo Sapien
<400> 160
    Met Thr Val Lys Thr Leu His Gly Pro Ala Met Val Lys Tyr Leu
        \(1 \begin{array}{lrrrrr} & 5 & 10 & 15\end{array}\)
    Leu Leu Ser Ile Leu Gly Leu Ala Phe Leu Ser Glu Ala Ala Ala
                    202530
Arg Lys Ile Pro Lys Val Gly His Thr Phe Phe Gln Lys Pro Glu
                    354045
Ser Cys Pro Pro Val Pro Gly Gly Ser Met Lys Leu Asp Ile Gly
                                    505560
Ile Ile Asn Glu Asn Gln Arg Val Ser Met Ser Arg Asn Ile Glu
                        \(65 \quad 70 \quad 75\)
Ser Arg Ser Thr Ser Pro Trp Asn Tyr Thr Val Thr Trp Asp Pro
                        80 85 80


```

 ataaaggcag acgctgtttt tctaaaaaaa 2380
 <210> 162
<211> 705
<212> PRT
<213> Homo Sapien
<400> 162
Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser
1 5 10
Pro Val Val Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala
Thr His Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp
35 40 45
Ile Leu Cys Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val
Leu Ala Pro Thr His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln
65 70 75
Lys Glu Thr Asp Cys Asp Leu Cys Leu Arg Val Ala Val His Leu
Ala Val His Gly His Trp Glu.Glu Pro Glu Asp Glu Glu Lys Phe
95 100 105
Gly Gly Ala Ala Asp Ser Gly Val Glu Glu Pro Arg Asn Ala Ser
110 115 120
Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr Pro Thr Ala
125 130 135
Arg Cys Val Leu Leu Glu Val Gln Val Pro Ala Ala Leu Val Gln
140 145 150
Phe Gly Gln Ser Val Gly Ser Val Val Tyr Asp Cys Phe Glu Ala
155 160 165
Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr Thr Gln Pro Arg
170 175 180
Tyr Glu Lys Glu Leu Asn His Thr Gln Gln Leu Pro Ala Leu Pro
185 190 195
Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val Leu
200 205 210
Asn Val Ser Glu Glu Gln His Phe Gly Leu Ser Leu Tyr Trp Asn
215 220 225
Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr
230 235 240
Gly Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys

```


<210> 163
<211> 2478
<212> DNA
<213> Homo Sapien
<400> 163
    gtcagtgcgg gàggccggtc agccaccaag atgactgaca ggttcagctc 50
    tctgcagcac actaccctca agccacctga tgtgacctgt atctccaaag 100
    tgagatcgat tcagatgatt gttcatccta cccccacgcc aatccgtgca 150
    ggcgatggcc accggctaac cotggaagac atcttccatg acctgttcta 200
    ccacttagag ctccaggtca accgcaccta ccaaatgcac cttggaggga 250
    agcagagaga atatgagttc ttcggcctga cccctgacac agagttcctt 300
    ggcaccatca tgatttgcgt tcccacctgg gccaaggaga gtgcccccta 350
    catgtgccga gtgaagacac tgccagaccg gacatggacc tactccttct 400

```

 tgcctcttct gtcattgttc aaaggtggga agagagcctg gaaaagaacc 1900
 aggcctggaa aagaaccaga aggaggctgg gcagaaccag aacaacctgc 1950
 acttctgcca aggccagggc cagcaggacg gcaggactct agggaggggt 2000
 gtggcctgca gctcattccc agccagggca actgcctgac gttgcacgat 2050
 ttcagcttca ttcctctgat agaacaaagc gaaatgcagg tccaccaggg 2100
 agggagacac acaagccttt tctgcaggca ggagtttcag accctatcct 2150
 gagaatgggg tttgaaagga aggtgagggc tgtggcccct ggacgggtac 2200
 aataacacac tgtactgatg tcacaacttt gcaagctctg ccttgggttc 2250
 agcccatctg ggctcaaatt ccagcctcac cactcacaag ctgtgtgact 2300
 tcaaacaaat gaaatcagtg cccagaacct cggtttcctc atctgtaatg 2350
 tggggatcat aacacctacc tcatggagtt gtggtgaaga tgaaatgaag 2400
 tcatgtcttt aaagtgctta atagtgcctg gtacatgggc agtgcccaat 2450
 aaacggtagc tatttaaaaa aaaaaaaa 2478
 <210> 164
<211> 574
<212> PRT
<213> Homo Sapien
<400> 164
Met Arg Thr Leu Leu Thr Ile Leu Thr Val Gly Ser Leu Ala Ala
1 5 10
His Ala Pro Glu Asp Pro Ser Asp Leu Leu Gln His Val Lys Phe
20 25 30
Gln Ser Ser Asn Phe Glu Asn Ile Leu Thr Trp Asp Ser Gly Pro
35 40 45
Glu Gly Thr Pro Asp Thr Val Tyr Ser Ile Glu Tyr Lys Thr Tyr
50 55 60
Gly Glu Arg Asp Trp Val Ala Lys Lys Gly Cys Gln Arg Ile Thr
65 70 75
Arg Lys Ser Cys Asn Leu Thr Val Glu Thr Gly Asn Leu Thr Glu
80 85 90
Leu Tyr Tyr Ala Arg Val Thr Ala Val Ser Ala Gly Gly Arg Ser
95 100 105
Ala Thr Lys Met Thr Asp Arg Phe Ser Ser Leu Gln His Thr Thr
110 115 120

```
Leu Lys Pro Pro Asp Val Thr Cys Ile Ser Lys Val Arg Ser Ile


```

 catattccag cagatgagac agactttgtc tgctttgaag gaggaagaga 450
 tgattttaat agttataatg tagaagagct tttaggatct ttggaactgg 500
 aggactctgt acctgaagag tcgaagaaag ctgaagaagt ttctcagcac 550
 agagagaaat ctcctgagga gtctcggggg cgtgaacttg accctgtgcc 600
 tgagcccgag gcattcagag ctgattcaga ggatggagaa ggtgctttct 650
 cagagagcac cgaggggctg cagggacagc cctcagctca ggagagccac 700
 cctcacacca gcggtcctgc ggctaacgct cagggagtgc agtcttcgtt 750
 ggacactttt gaagaaattc tgcacgataa attgaaagtg ccgggaagcg 800
 aaagcagaac tggcaatagt tctcctgcct cggtggagcg ggagaagaca 850
 gatgcttaca aagtcctgaa aacagaaatg agtcagagag gaagtggaca 900
 gtgcgttatt cattacagca aaggatttcg ttggcatcaa aatctaagtt 950
 tgttttacaa agattgtttt tagtactaag ctgccttggc agtttgcatt 1000
 tttgagccaa acaaaaatat attattttcc cttctaagta aaaaaaaaaa 1050
 aaaaaaaaaa 1060
 <210> 166
<211> 303
<212> PRT
<213> Homo Sapien
<400> 166
Met Ala Ala Ala Pro Gly Leu Leu Phe Trp Leu Phe Val Leu Gly
1 5 10 15
Ala Leu Trp Trp Val Pro Gly Gln Ser Asp Leu Ser His Gly Arg
20 25 30
Arg Phe Ser Asp Leu Lys Val Cys Gly Asp Glu Glu Cys Ser Met
35 40 45
Leu Met Tyr Arg Gly Lys Ala Leu Glu Asp Phe Thr Gly Pro Asp
50 55 60
Cys Arg Phe Val Asn Phe Lys Lys Gly Asp Asp Val Tyr Val Tyr
65 70 75
Tyr Lys Leu Ala Gly Gly Ser Leu Glu Leu Trp Ala Gly Ser Val
80 85 90
Glu His Ser Phe Gly Tyr Phe Pro Lys Asp Leu Ile Lys Val Leu
95 100 105
His Lys Tyr Thr Glu Glu Glu Leu His Ile Pro Ala Asp Glu Thr
110 115 120

```


```

tttgttttct cgaaataatt catctttcag cttctctgct tttggtcaat 1800
gtctaggaaa tctcttcaga aataagaagc tatttcatta agtgtgatat 1850
aaacctcctc aaacatttta cttagaggca aggattgtct aatttcaatt 1900
gtgcaagaca tgtgccttat aattattttt agcttaaaat taaacagatt 1950
ttgtaataat gtaactttgt taataggtgc ataaacacta atgcagtcaa 2000
tttgaacaaa agaagtgaca tacacaatat aaatcatatg tcttcacacg 2050
ttgcctatat aatgagaagc agctctctga gggttctgaa atcaatgtgg 2100
tccctctctt gcccactaaa caaagatggt tgttcggggt ttgggattga 2150
cactggaggc agatagttgc aaagttagtc taaggtttcc ctagctgtat 2200
ttagcctctg actatattag tatacaaaga ggtcatgtgg ttgagaccag 2250
gtgaatagtc actatcagtg tggagacaag cacagcacac agacatttta 2300
ggaaggaaag gaactacgaa atcgtgtgaa aatgggttgg aacccatcag 2350
tgatcgcata ttcattgatg agggtttgct tgagatagaa aatggtggct 2400
cctttctgtc ttatctccta gtttcttcaa tgcttacgcc ttgttcttct 2450
caagagaaag ttgtaactct ctggtcttca tatgtccctg tgctcctttt 2500
aaccaaataa agagttcttg tttctggggg aaaaaaaaaa aaaaaaaaaa 2550
aaaaaaaaaa aaaaaaaaaa 2570
<210> 168
<211> 273
<212> PRT
<213> Homo Sapien
<400> 168
Met Ser Arg Val Val Ser Leu Leu Leu Gly Ala Ala Leu Leu Cys
1 5 10
Gly His Gly Ala Phe Cys Arg Arg Val Val Ser Gly Gln Lys Val
20 25
2530
Cys Phe Ala Asp Phe Lys His Pro Cys Tyr Lys Met Ala Tyr Phe
35 40 45
His Glu Leu Ser Ser Arg Val Ser Phe Gln Glu Ala Arg Leu Ala
50 55 60
Cys Glu Ser Glu Gly Gly Val Leu Leu Ser Leu Glu Asn Glu Ala
65 70 75
Glu Gln Lys Leu Ile Glu Ser Met Leu Gln Asn Leu Thr Lys Pro 808590

```
```

Gly Thr Gly Ile Ser Asp Gly Asp Phe Trp Ile Gly Leu Trp Arg
Asn Gly Asp Gly Gln Thr Ser Gly Ala Cys Pro Asp Leu Tyr Gln
110 115
1 1 5 1 2 0
Trp Ser Asp Gly Ser Asn Ser Gln Tyr Arg Asn Trp Tyr Thr Asp
125 130 135
Glu Pro Ser Cys Gly Ser Glu Lys Cys Val Val Met Tyr His Gln
140 145 150
Pro Thr Ala Asn Pro Gly Leu Gly Gly Pro Tyr Leu Tyr Gln Trp
155 160 165
Asn Asp Asp Arg Cys Asn Met Lys His Asn Tyr Ile Cys Lys Tyr
170 175 180
Glu Pro Glu Ile Asn Pro Thr Ala Pro Val Glu Lys Pro Tyr Leu
185 190 195
Thr Asn Gln Pro Gly Asp Thr His Gln Asn Val Val Val Thr Glu
200 205 210
Ala Gly Ile Ile Pro Asn Leu Ile Tyr Val Val Ile Pro Thr Ile
215 220 225
Pro Leu Leu Leu Leu Ile Leu Val Ala Phe Gly Thr Cys Cys Phe
Gln Met Leu His Lys Ser Lys Gly Arg Thr Lys Thr Ser Pro Asn
245 250 255
Gln Ser Thr Leu Trp Ile Ser Lys Ser Thr Arg Lys Glu Ser Gly
Met Glu Val
<210> 169
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 169
tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 170
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe

```
```

